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ABSTRACT 

This study involves an experimental work for using textile reinforced mortar (TRM) 

to increase the flexural strength of reinforced concrete (RC) beams. Two different 

types of textiles namely carbon and Polyparaphenylene benzobisoxazole (PBO) were 

used as strengthening materials. The studied parameters included the type of mortar, 

type of strengthening material, number of TRM layers, and reinforcement ratio. 

Eighteen 18 beams were tested under four-point loading until failure. The beams were 

reinforced with 2D10, 2D12 and 2D16 as main steel reinforcement. Three beams 

were tested as control specimens namely R1, R2 and R3 respectively. Nine beams 

were externally reinforced with one layer (𝐸𝐸)𝑐1 = 12.56 kN/mm, two layers 

(𝐸𝐸)𝑐2 =25.12 kN/mm and three layers (𝐸𝐸)𝑐3 = 37.68 kN/mm of the carbon TRM 

system. The other six beams were strengthened using one (𝐸𝐸)𝑃𝑃𝑃1 =6.4 kN/mm and 

two layers (𝐸𝐸)𝑃𝑃𝑃2 =12.8 kN/mm of the PBO TRM system.  

The experimental work concluded that a reasonable gain in the flexural strength was 

achieved for both the strengthening systems, with an average increase of 38% when 

carbon TRM system was used and an average of 26.7% for the PBO TRM system 

compared to their respective control specimen. The highest increase in the load 

carrying capacity was 77.51% for a specimen having the main reinforcement of D12 

and was strengthened with carbon TRM system using three layers of carbon textile 

(𝐸𝐸)𝑐3 = 37.68 kN/mm. The lowest increase in the ultimate load capacity was 6.60% 
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for a specimen having the main reinforcement of D16 and was strengthened with one 

layer of the PBO (𝐸𝐸)𝑃𝑃𝑃1 = 6.4 kN/mm strengthening system.  

Further, PBO system showed comparatively stronger interfacial bond behavior within 

the TRM system and further between the TRM layer and concrete substrate, which 

resulted in higher ductility index and higher energy absorption. Moreover, during the 

experimentation, it was seen that the technique of applying the TRM system also 

considers the contractor’s ease where the construction workers (although not very 

skilled) can easily implement the technique after being given simple demonstrations. 
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CHAPTER 1 
INTRODUCTION 
 

In this chapter, a background information is given to the strengthening of concrete 

beams by using different techniques. Brief introduction to the factors that influence 

the damage in the reinforced concrete structures are discussed. New strengthening 

techniques and their significance have also been highlighted. Finally, the aims and 

objectives of this project have been stated with an explained project methodology. 

1.1 Background 

Concrete is the main construction material in the Gulf region, which is characterized 

by its high temperatures, severe humidity and high chloride content in soil and 

concrete materials. Such severe environment is the main cause of corrosion and 

deterioration of the reinforcing steel bars in concrete structures which significantly 

reduces the life span of structures. Coastal structures suffer from extensive 

carbonation and chloride attack, which causes reinforcement corrosion, concrete 

spalling and cracks after ten years of their age [1]. In a recent study [2], the surface 

chloride build-up rate was reported as 0.3% of concrete weight per year in the tidal 

zone of the Arabian Gulf, as compared to 0.04-0.15% in other marine environments. 

Moreover, most of the surface coatings do not prevent the penetration of chloride in 

to the concrete due to the harsh environment interaction of the Gulf region. 

The damage of concrete structures can be mitigated by applying effective 

strengthening techniques. Several techniques have been investigated and applied by 
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previous research as discussed in later sections of this thesis. The cost of 

rehabilitation and strengthening of concrete structures is usually estimated in millions 

of dollars [3]. Therefore, looking for a reliable technique to counter the corrosion 

consequences in the Gulf environment seems to be a challenge for engineers and 

researchers. 

1.2 Strengthening techniques for RC beams 

Different strengthening techniques are available in the market depending on the 

purpose needed for strengthening. The composite plates may be used to strengthen a 

structural member with different reinforcement materials, in different proportions and 

by using different matrix materials [4]. An economical solution depends on the 

market availability of the materials and the ease of application of the strengthening 

technique. 

1.2.1 Ferrocement as a strengthening material 

In the traditional method of strengthening the damaged structures, the corroded bars 

are replaced with new steel rebars and the deteriorated concrete layers are substituted 

with the fresh concrete layers. A strengthening technique that is appealing for 

strengthening is the use of ferrocement as external reinforcement, in which steel 

meshes are embedded between layers of cementitious mortars.  

A recent study [5] showed that ferrocement is a good strengthening technique for the 

loaded reinforced concrete beams and is mainly targeted for the developing countries 
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where it is not possible to carry out the strengthening process while releasing all the 

live loads. 

The uniform dispersion of reinforcement in the mesh offers improvement in strength, 

ductility, and crack width control. However, despite the advantages of this technique, 

it does not prevent the re-initiation of corrosion after strengthening due to the 

presence of the steel mesh. 

1.2.2 Fiber reinforced polymers with epoxy as external reinforcement 

Extensive applications of fiber-reinforced polymer (FRP) materials as a relatively 

new strengthening material have been accomplished and provided an attractive 

alternative to the ferrocement technique and other traditional strengthening 

techniques. The great success of using FRP products in the strengthening of concrete 

structures was driven by their anti-corrosive properties, lightweight, and high tensile 

strength.  

FRP has been used to strengthen the reinforced concrete structures subjected to 

corrosion [6]. The fatigue capacity of beams with corroded steel reinforcement has 

been increased when prepared with carbon fiber reinforced polymer (CFRP) sheets 

beyond that of the control un-strengthened beams having the un-corroded steel 

reinforcement. 

A comparable fatigue performance was achieved for the beams that were 

strengthened with carbon fabric reinforced polymer (CFRP) at a medium level of 

corrosion and then were further corroded to high level corrosion before the start of the 
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test to those that were strengthened and were tested directly to a high corrosion level 

[7]. 

1.2.3 Drawbacks of fiber reinforced polymers 

In Gulf region where the climate is mostly hot, the problem with the failing of bond 

strength at high temperature is a significant issue. The CFRP does not show a proper 

bond strength with the concrete surface at high temperatures [8]. In fact, the curing 

process for the epoxy resins, which are normally used to glue the FRP composite to 

concrete substrate, starts at a low glass transition temperature (Tg) which will affect 

the mechanical properties of the adhesive. The bond performance can be influenced 

by this reduction, compromising the effectiveness of reinforcing techniques [9].  

1.2.4 New strengthening technique – Textile reinforced mortar  

This study proposes a new technique that utilizes textile-reinforced mortar (TRM) to 

strengthen concrete beams. TRM system consist of one or more layers of textiles 

made of carbon or Polyparaphenylenebenzobisoxazole (PBO) grids among others that 

are sandwiched between layers of cementitious mortars (Figure 1). If the mortar is 

polymer modified, the maximum content of organic compounds (dry polymers) in the 

matrix is limited to 5 percent by weight of cement. . Also, the TRM in North America 

is known as fiber reinforced cementitious mortar (FRCM) when used as a repair 

material [10]. With this technique, corrosion can be mitigated after strengthening due 

to the non-corrosive nature of the textile grids. Meanwhile, the cement-based mortar 

used in TRM acts as a barrier against chloride ions penetration thus protecting the 
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main reinforcing bars from corrosion attack. Its lightweight, high tensile strength and 

ease of application makes the system attractive. This technique also surmounts the 

epoxy-bonded FRP systems that lack fire resistance as the embedded grid is protected 

between the mortar layers; thus reducing its vulnerability hazard as the organic matrix 

is no longer present. 

 

Figure 1: Schematic representation of TRM system 

1.3 Motivation and significance 

Qatar is significantly investing in construction industry of civil infrastructure for the 

21st century, and it is of outmost importance for the country to have available 

maintenance, repair, and strengthening strategies that allow for safe, continuous, 

uninterrupted, and efficient functionality. The majority of these construction work 

projects in Qatar utilize reinforced concrete (RC) and the country is surrounded by 

the Arabian Gulf; a fact which means that these RC structures are more readily 

subjected to “seawater exposure” in the form of humidity or even direct splashing for 

sea-level and offshore structures. Also, Qatar is characterized by its high temperature, 
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severe humidity and high chloride content in concrete materials. Such severe 

environment is the main cause for reducing the life span of the structure to 10 - 15 

years. In some cases, the owner may decide to demolish the whole building simply 

because it reaches a “beyond repair” stage, which means that either it cannot be 

safely repaired or it becomes much expensive to repair than to demolish and rebuild. 

This study proposes an “optimum strengthening technique” for RC structures to 

mitigate the prevailing conditions of Qatar. This relatively new technique utilizes 

textile-reinforced mortar (TRM) to strengthen concrete beams. The potential of TRM 

for the repair and strengthening of concrete structures is not just the result of its 

physio-mechanical performance but also the ease and simplicity of installation that 

does not require any sophisticated equipment or retraining of the construction work. 

From past experience, the TRM technique might be the best alternative compared to 

traditional epoxy-based composites. 

1.4 Organization of thesis 

A review of the literature in the areas related to the strengthening of the reinforced 

concrete structures using Textile Reinforced Mortars (TRM) are summarized in 

Chapter 2. Moreover the limitations of past studies and the methodology applied is 

also highlighted. 

Chapter 3 introduces the material characterization of all the material. Further, the 

preparation of beam specimens and steps followed for the strengthening technique 

application has also been discussed. 
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Chapter 4 covers the detailed test results of each specimen. The test results include 

the graphs of load vs displacement, steel strain and concrete strain respectively. 

Moreover the crack patterns and the mode of failure of each specimen has also been 

reported in this chapter. The latter section covers a summary of the test result and also 

the effect of different parameters in order to understand the behavior of each system 

and to make comparisons between the two TRM systems. 

Chapter 5 deals with the computation of theoretical load value calculations. It 

includes step-by-step formulations adopted for calculating the flexural resistance of 

typical doubly-reinforced concrete beam with and without TRM strengthening.  

Chapter 6 briefly summarizes the work reported in this thesis, highlighting the main 

findings and finally proposes the recommendations for further studies. 
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CHAPTER 2 
LITERATURE REVIEW 
 

The detailed literature study is conducted in this chapter about the topics related to 

strengthening of the reinforced concrete structures using textile reinforced mortars 

(TRM). The limitations of the past research studies and the methodology will also be 

highlighted. 

2.1 Fiber reinforced polymer (FRP) composite versus textile 

reinforced mortar (TRM) 

Deterioration or the strict design requirements lead to the rehabilitation and 

strengthening of existing concrete structures. One of the most common strengthening 

technique for reinforced structures is fiber reinforced polymers (FRP) [11], [12]. The 

FRP has attained the increasing popularity in the modern era due to the attractive 

properties, such as; corrosion resistance, high strength to weight ratio, ease and speed 

of application and minimal change in geometry [10-11]. 

However, the FRP strengthening techniques bring about certain drawbacks, which are 

accredited to organic resins normally used to fix and saturate the fibers [15]. These 

disadvantages may include: (a) poor behavior at temperatures above the glass 

transition temperature; (b) de-bonding of FRP from concrete substrate; (c) relatively 

high cost of epoxy resins; (d) non-applicability on damp surfaces; (e) lack of vapor 

permeability, which lead to damage of concrete structure; (f) incompatibility of resins 
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and substrate materials; (g) difficulty to conduct post-earthquake damage evaluation 

under (undamaged) FRP jackets [13]. 

TRMs systems are based on inorganic (cementitious) matrixes. Unlike polymer 

binders, cementitious matrixes cannot fully impregnate individual fibers. Therefore the 

typical fiber sheets which are used in FRP are installed by manual layup are replaced 

in TRM with a structural reinforcing mesh (fabric). The fibers used in the TRM mesh 

are bonded together without any polymer resin but there is a coating on the mesh as a 

whole.  If a polymer is used to either cover or bond the strands, such polymer does not 

fully penetrate and impregnate the fibers as it would in FRP That is why, the TRM 

mesh is a dry fiber because the fibers are free from the polymer resin [10]. 

Fiber matrix relations could be attained when continuous fiber sheets are changed by 

the textiles, resulting in the generation of new material, called as textile reinforced 

mortars (TRM) and this might be considered as an alternative technique to FRP in the 

field of strengthening [13]. 

a)  b)  

Figure 2: a) Two directional carbon fiber based textile [16] b) Application at the base of reinforced 

concrete column [17] 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.textileworld.com/Articles/2013/February/Textile_News/Strong_Grids_Unleash_The_Forces_Of_Creativity&ei=2FCRVdu5CuKa7gbF1YP4DA&bvm=bv.96783405,d.bGQ&psig=AFQjCNFXNjNwwq1acCRiN27Hy16PELG6_A&ust=1435673071503505
http://www.strulab.civil.upatras.gr/sites/default/files/images/gallery/stulab 3.jpg
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2.2 Textile reinforced mortar (TRM) 

Textile (Figure 2) in TRM comprises of fabric meshes made of long woven, knitted 

or even unwoven fiber rovings in at least two typically orthogonal directions (primary 

and secondary direction. The spacing and the amount of rovings in each direction can 

be controlled and by this it will affect the mechanical characteristics of textile as well 

as the penetration of the mortar matrix through the mesh openings [13]. 

Polymer modified cementitious matrix having the maximum content of organic 

compounds in matrix limited to 5 percent by weight of cement, should meet the 

following requirements: a) no shrinkage, b) high workability (trowel can be used 

easily for the application), c) high viscosity, d) low rate of workability loss 

(application of each mortar layer should be possible while the previous one is still in 

fresh condition), and e) enough shear strength [13] in order to avoid premature de-

bonding. 

TRM systems have several advantageous which are documented in [10] as  

a) Compatibility with chemical, physical and mechanical properties of 

concrete or masonry substrate. 

b) Ease of installation as traditional plastering or trowel trades can be 

used 

c) Porous matrix structure that allows air and moisture transport both 

into and out of the substrate  
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d) Good performance at elevated temperatures in addition to partial fire 

resistance 

e) Ease of reversibility (which means the ability to undo the repair 

without damaging the original structure). 

Characteristics of the composite of the textile reinforced concrete are greatly 

influenced by the properties, amount and arrangements of the fiber material. 

Therefore, certain demands have to be fulfilled by the fiber material and its 

textile. Besides the high fiber tenacity and breaking elongation, the modulus 

of elasticity should be much higher than concrete. Without losing the 

properties, fiber material has to withstand the alkaline medium permanently 

in order to ensure the life- long reinforcing effect [15]. 

2.3 Previous research studies: 

Previous research studies have proven a great success of TRM in enhancing the 

performance of RC structures [18], [19], [20], [21]. Most of these studies were 

motivated by the desire to remedy the lack of fire resistance of epoxy based bonding 

agents and to use recycled materials that have a low impact on the environment [18]. 

Some of the important and most relevant research studies related to strengthening of 

RC beams using TRM are summarized in Tables 1, 2 and 3 respectively.  

As far as reinforced concrete strengthening is concerned, TRM systems have been 

developed to strengthen existing concrete structures. The feasibility of using carbon 

TRM to strengthen RC beams in flexure is reported in [22]. One control beam (un-
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strengthened) was tested and the second beam was strengthened with four-layer mesh 

TRM. The TRM-strengthened beam displayed a failure mechanism that was ruled by 

an inter-laminar shear and showed a good pseudo-ductility.  

Elsanadedy et al. [23] checked the flexural strengthening of reinforced concrete 

beams experimentally as well as numerically. The summary of the tested specimen 

details and their results has also been summarized in Table 1. Their study comprises 

the type of mortar, number of TRM layers and the type of strengthening material. Six 

simply supported small scale beams (150 x 200 x 2000 mm) were tested under four 

point loading. Two beams were used as control specimens while three beams were 

strengthened by TRM in which basalt was used as a textile and in the last beam a 

single layer of CFRP laminates was used for strengthening. The beams were 

reinforced with 2D10 longitudinal rebars on top as well as at the bottom with a cover 

of 25 mm. Cementitious and polymer-modified cementitious mortar were utilized in 

the study. U-shaped technique having 10 numbers of layers was used in TRM 

strengthened beams while a single layer of CFRP sheet was applied only at the soffit 

in FRP- strengthened beams. A displacement rate of 1 mm/min was used to test all 

the beam specimens that were loaded monotonically until the failure. The 

experimental result proved that polymer modified cementitious mortar gives better 

bond between the concrete surface and TRM layers as compared to cementitious 

mortars. The flexural capacity of reinforced concrete beams were increased from 39% 

to 91% using the basalt textile reinforced mortar. The results also showed that TRM 
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based strengthening system is more effective in terms of deflection ductility and is 

slightly less effective in enhancing the flexural strength compared with CFRP. 

D. Ambrisi and Focacci have discussed the experimental results of RC beams that 

were strengthened in flexure with various types of TRM materials [24]. Carbon and 

PBO meshes and the two types of cementitious matrices were tested. The failure of 

TRM-strengthened beams was initiated by loss of strengthening action as a result of 

fiber debonding, three different debonding modes were identified. In most cases, the 

fiber debonding involved the fiber/matrix interface instead of the concrete substrate. 

Polyparaphenylene benzobisoxazole (PBO) TRM performed better than carbon TRM. 

The fiber strain at beam failure was estimated at 0.8 to 0.9 percent in carbon TRM 

and 1.3 to 1.5 percent for PBO TRM. The performance of TRM materials is strongly 

dependent on the matrix design and constituents as they affect the fibers/matrix bond. 

Kotynia et al. [25] presented the experimental and numerical study of the reinforced 

concrete beams (RC) that were strengthened in flexure with different externally 

bonded carbon fiber-reinforced polymers (CFRP) as well as the wet lay-up sheets. 

The summary of the adopted strengthening techniques and test results is shown in 

Table 1. A total of ten rectangular specimens (150 x 300 x 4450 mm) with a clear 

span of 4200 mm were tested in order to calculate the effect of using the additional U 

– shaped CFRP systems on the intermediate crack debonding of bottom laminate. U-

shaped wet lay-up sheets and spaced side- bonded CFRP L-shaped laminates were 

proposed as the additional strengthening system. Based on the experimental results, 
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the observed mode of failure for all the tested specimens was the intermediate crack 

debonding of bottom FRP flexural strengthening reinforcement. Also a debonding 

plane was seen in the concrete cover. While using the wide laminates and transverse 

FRP continuous U wrap system, the ultimate load carrying capacity was increased 

due to additional CFRP reinforcement. 

Papanicolaou et al. [26] made experimental and analytical investigations on the use of 

carbon and glass TRM to strengthen 2 x 2 m two-way slabs that were subjected to 

central concentrated forces. The load-carrying capacity of the TRM-strengthened 

slabs using one and two carbon, and three glass fabric layers increased by more than 

25, 50, and 20 percent, respectively, over that of the control specimen. 

Si Larbi, Agbossou, and Hamelin [27] reported an experimental and numerical study 

on repair and strengthening of reinforced concrete beams using textile reinforced 

concrete (TRC), hybrid solutions (TRC + carbon and glass rods) and carbon fiber-

reinforced polymers (CFRP) solutions. The complete summary has been shown in 

Table 3. The investigated parameters include the bearing capacity and different 

failure modes. The TRC used in this study consisted of a selected mortar of fine 

particles and textile (AR glass) reinforcement. Two variables were selected. The first 

TRC was consisted of three layers of alkali-resistant fabric that was embedded inside  

the mortar and second one combined the two layers of alkali resistant fabric with 

carbon rods (TRC +JV) or the combination of carbon and glass (TRC + JVC). Five 

reinforced concrete (RC) beam specimens (150 x 250 x 2300 mm) have been tested. 
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The beams were internally reinforced with 12 mm rebars at the bottom side and two 8 

mm rebars at the top. Out of the total five, one was the control specimen and rests 

were strengthened as TRC, CFRP, TRC+JC and TRC+JVC.  In order to check the 

performance of reinforcement in case of repair, three beams were loaded prior of 

strengthening (CFRP, TRC+JC and TRC+JVC) until longitudinal steel yields and are 

named as damaged beams.  The control specimens and TRC were undamaged beams. 

The static monotonic load were applied under the load control (1 kN / min) until the 

specimens fails. Load cell of 200 kN capacity was used to measure the load value.  

The experimental results of the work done by Si Larbi, Agbossou, and Hamelin [27] 

showed that the TRC alone cannot be considered for increasing the bearing capacity 

as it significantly improves the ultimate capacity. Although TRC showed a multi-

cracking behavior, but it did not provide any relevant gain in terms of ductility. For 

the concrete cracks, the average crack spacing was inversely proportional to axial 

stiffness of the reinforcement and the stress transfer between the longitudinal steel 

and external reinforcement will also be increased while increasing the axial stiffness. 

Gencoglu and Mobasher [28], [29] strengthened plain concrete flexural members with 

alkali-resistant (AR) glass TRM. The results obtained showed an increase in the load 

carrying capacity as well the increase in the pseudo-ductility by using different layers 

of AR glass mesh. A design procedure based on composite laminate theory was 

proposed [30] to address the contribution of TRM, where an algorithm produces a 
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moment-curvature relationship for the section, which in turn can be used to calculate 

the load-deflection response of a structural member [31]. 

Verbruggen, Tysmans, and Wastiels [32] focused on the cracking behavior for the 

textile reinforced cement (TRC) or carbon fiber reinforced polymer (CFRP) 

strengthened reinforced concrete beams.  A total of 17 beam specimens having five 

different types were studied in which three beam types (control, TRC reinforcement 

or CFRP reinforcement) were used to study the effect of external reinforcement on 

the behavior of internally reinforced concrete beams. All the beams were simply 

supported small scale (100 x 100 x 650 mm) and were tested under the four point 

bending with third point loading. The main longitudinal rebar in all the beams were 

2D8. In the TRC –matrix, Inorganic Phosphate cement (IPC) was used along with the 

glass fibers.   

The experimental results of Verbruggen, Tysmans, and Wastiels [32] showed that the 

stability of inner steel reinforcement was increased when external reinforcement was 

added to the concrete beam without affecting the mode of failure, total number of 

cracks and ultimate load capacity. However, the immediate opening of already 

existing cracks reduces the initial high uncracked stiffness of the beam. 

S. Babaeidarabad et al.  [33] investigated the feasibility of fabric- reinforced 

cementitious mortar (FRCM) materials to be used as an alternative external 

strengthening technique using dry- fabric. The experimental setup consisted of testing 

eigtheen reinforced concrete beams (260 x 152 x 1829 mm) strenthened in flexure 
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using one and four layers of PBO-fabric. The beams were fabricated using low and 

high strength concrete. The three-point bending test was conducted with 

instrumentation including the laod cell, linerar variable differential transducers 

(LVDTs) and strain gauges. Six strain guages were installed to measure the strain at 

different locations which are; two on the longitudinal steel bars; two on FRCM 

(tension face) and two on concrete surface (compression side). Displacement control 

mode of loading rate 3.05mm/min was used to test all the beam specimens in 

quasistatic loading and unloading cycles for a total of six cycles. 

The experimental result reported in  S. Babaeidarabad et al.  [33] showed that by 

using one ply of FRCM , the avereage ultimate load recorded was 67.7 kN and 63 kN 

for low strength concrete and high strength concrete specimen respectively. However, 

the beams that were strengthened with four ply of FRCM, reached the highest peak 

load value with an average of 99 kN for low strength concrete speciemns and an 

average of 96.8 kN for high strength concrete specimens and both of them are almost 

1.5 times than that of 1 ply specimens. Also the test results identified two modes of 

failure which were named as the fabric slip within the FRCM layer and second one 

was  FRCM delamination from concrete substrate. Moreover the analysis and design 

were conducted to calculate the flexural capaicty of beams and while comparing the 

results with the experimental database, it showed comparatively satisfactory results 

with a lillte variation from the experimental results.   
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D. Arboleda et al. [34] focused on the characterization of tensile behavior of FRCM 

composites. Two setups were investigated in this study namely clevis grip and a 

clamping grip. A trilinear curve of stress-strain behavior of FRCM was observed with 

having the main difference in the stresses that were generated by the grips used in two 

different methods. Shear stresses were only transferred in the first case while in the 

second one compression and shear stresses were transferred. Five different FRCM 

systems were used in this study named as Polyparaphenylene benzobisoxazole 

(PBO), two types of carbon fiber (C fiber and cC fiber), and two types of glass fabric 

(G fiber and cG fiber). Each fabric was laid with its associated mortar which were 

given by the manufacturer. Moreover the recommendations for the tensile 

characterization of FRCM materials has also been provided in this study. 

Triantafillou [13] focused on the effectiveness of TRM as externally applied flexural 

strengthening reinforcement for reinforced concrete (RC) beams. The detail of test 

specimens and their experimental results has also been illustrated in Table1. Three 

under-reinforced beams (150 x 250 x 2000 mm) were tested under four point bending 

having the main reinforcement of 2D12. Self-compacting concrete having the 28 days 

compressive strength of 34.5 MPa was used for the casting of beam specimens. Out 

of three, one of the specimen was tested as a control specimen (un-strengthened). The 

second one was strengthened using four layers of textile fabric bonded with cement 

based mortar and the third specimen was strengthened by four layers but bonded with 

epoxy resin based matrix. The beams were tested monotonically as the load was 

applied using a vertically positioned actuator and a heavy spread beam. Two 



 
 

19 
 

differential transducers were mounted on both sides of the beams in order to get the 

displacements at the mid span. The experimental results showed that the bilinear 

response was displayed for the control specimen and the deflection at maximum load 

(83 kN) was nearly 40 mm. The beam strengthened by epoxy impregnated textile 

showed an increased strength and increased stiffness by approximately 50%. The 

beam failed suddenly (at 125 kN) because of the tension fracture of externally bonded 

reinforcement at mid-span. The other beam strengthened by cement based mortar, 

displayed almost the similar characteristics, but its response was a little more ductile 

means the steel tends to yield at lower load value; the ultimate load (111 kN) was 

even lower. The mode of failure was the debonding at the end of the TRM layer due 

to the inter-laminar shearing. In short, the TRM based strengthening was 

approximately 30% less effective in terms of flexural strength, but 30 % more 

effective in terms of ductility (displacement). 

2.3.1 Concrete surface abrasion techniques 

The concrete surface was prepared so that the overlays or coatings should make a 

strong bond with the underlying concrete [35]. Separate techniques and different 

types of equipment can be used in order to roughen the surface. Scarifiers, scabblers, 

abrasive blasters and water blasters are some of the machines that can be used for 

roughening the surface. 
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2.3.1.1 Abrasive blasters 

Abrasive blasters include the sand blasting as well as shot blasters technique [35]. 

The details for both the methods are given below. 

Sandblast:  

Most of the contractors are familiar with the sand blasting machines (Figure 3) as 

abrasive blasters. The machine uses compressed air to eject a high speed stream of 

sand from the nozzle.  

 

Figure 3: Sand blasting machine [36] 

Dust may cause health issues when sandblasting is used. Workers have to wear an air- 

fed helmets as breathing heavy concentration of dust over an extended period is 

harmful. There is some sandblasting systems which inject water along with the sand 

and this also provides a wash down of cleaned surface instead of holding down the 

dust [35]. 
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Shot blasters:  

A metallic abrasive steel shot has been used in shot blasting machine (Figure 4) to 

roughen the concrete surface. The shot is pushed by a rotating wheel, influences on 

the concrete surface and bounces back into a recovery unit. One of the major 

advantages of shot blasters is the good control of the dust. As, there is no need of 

water, the surface is immediately ready for the application of coating which requires a 

dry surface. It is typically used for cleaning to depth up to 1/8 inch [35]. 

 

Figure 4: Shot blasting equipment [37] 
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2.3.1.2 Water blasters 

Newly developed high pressure water blasters (Water Jetting Machine) are now being 

used to prepare concrete surfaces for repairing purposes (Figure 5). With these water 

blasters around 2 to 3 inches of removal depth are most commonly done in bridges 

and parking decks [35]. 

 

 

 

 

 

 

Figure 5: Water jetting machine [38] 

High pressure water jets used for concrete removal typically develop pressures 

ranging from 16,000 to 25,000 psi. Water consumption is at the rate of about 20 to 26 

gallons per minute. Depth of the removal is controlled by adjusting water pressures 

and speed of the machine. The main advantage of using water jetting machine is that 

no dust is created and machine removes deteriorated concrete selectively and leaves 

good concrete intact [35]. 
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Table 1: Summary 1 of existing experimental work on flexural strengthening using TRM technique 

Experimental Detail Elsanadedy et al. 
[23] Kotynia et al. [25] Triantafillou [13] 

Test Specimen Details 

6 RC Beams (150 x 
200 x 2000 mm) 
with 2 beams as 
control specimen. 
 

10 RC beams (150 x 
300 x 4200 mm) 

3 RC beams (150 x 
250 x 2000 mm) 
with one as control 
specimen 

Type of FRCM 

i. Basalt textile (3-
beams) 

ii. CFRP laminates 
(1- beam) 

 

i. CFRP Laminates 
ii. Wet layup sheet 

i. Carbon fiber with 
cement based 
mortar 

ii. Epoxy resin-based 
matrix material 

Reinforcement Type 
2D10 on top and 
bottom sides 
 

2 D12 on bottom and 
2 D10 on top sides 

2 D12 on bottom 
and top sides 

Mortar matrix Type 

i. Cementitious 
ii. Polymer 

modified 
cementitious 

Associated cement 
mortar 

i. Cement based 
mortar 

ii. Epoxy resin 

Strengthening 
Technique 

i. U shaped 
ii. Flat shape 

i. Flat strips 
ii. Continuous U 

shaped Laminates 
iii. Spaced L shaped 

Laminates (spacing  
200 mm) 

Flat type 

No. of Layers of 
Textile 

i. 10 layers 
ii. 1 layer 

i. 3layers 
ii. 1 layer 

iii. 2 layers 
 

4 layers 

Increase in Flexural 
Strength (%) 

i. 40 % 
ii. 22 % 

i. U shaped ;34 % 
ii. L shaped; higher 

load values 
 

i. 25 % 
ii. 50 % 

Observed Failure i. TRM debonding 
ii. Textile rupture 

CFRP debonding 
 

i. TRM debonding 
ii. Tensile fracture 
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Table 2: Summary 2 of existing experimental work on flexural strengthening using TRM technique  

Experimental Detail T. Sen and H. N. 
Jagannatha Reddy [39] Al-Salloum[14] 

Test Specimen 
Details 

7 beams with 3 main 
groups (140 x 200 x 1400 
mm) with one group as 
control specimen 

10 beams (150 x 200 x 
1500 mm) with one as 
control specimen 

Type of FRCM 

i. Full length wrapping 90o 
(Jute, Carbon and Glass) 
FRP 

ii. Strip wrapping 90o (Jute, 
Carbon and Glass) FRP 
(62 mm strips at 124 mm 
C/C) 

Basalt based textile with 
different orientation 

Reinforcement Type 2 D8 and 3 D 8  4 D10 at bottom and 2 D10 
at top side 

Mortar matrix Type Associated Mortar 
Cementitious 
Polymer-modified 
cementitious 

Strengthening 
Technique U –wrap three sided 2 sides in shear span  

No. of Layers of 
Textile 

One layer for all three 
groups 

2 layers 
4 layers 

Increase in Flexural 
Strength (%) 

i. 62.5, 150 and  125 
ii. 25, 50 and 37.5 36 -88% in shear capacity 

Observed Failure i. Debonding of FRP 
ii. Flexural crack Shear failure 
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Table 3: Summary 3 of existing experimental work on flexural strengthening using TRM technique  

Experimental Detail Si Larbi, Agbossou, and 
Hamelin [27] 

Test Specimen 
Details 

5 RC beams (150 x 250 x 2300 
mm) with one control specimen 

Type of FRCM 

i. TRC 
ii. CFRP 
ii. TRC(glass fabric) & JC 

(carbon rod) 
v. TRC (glass fabric) & 

JCV(glass and carbon rod) 

Reinforcement Type 2D12 and 2D8 

Mortar matrix Type 
Associated Mortar of fine 
particles (diameter  less than 
0.8mm) 

Strengthening 
Technique Flat type  (Soffit of beam) 

No. of Layers of 
Textile 

i. 3 glass AR fabric 
ii. Carbon Fiber 
ii. (2 glass fabric)+(8 carbon rods) 
iv. (2 glass fabric)+(12 Glass rod 

and 4 carbon rods) 

Increase in Flexural 
Strength (%) 

i. 28.1 % 
ii. 86.5 % 
ii. 57.3 % 
v. 63.5 % 

Observed Failure 

i. Strengthening plate failure 
ii. Peeling off 
ii. Peeling off 
iv. Strengthening plate failure 
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2.4 Limitations of past research studies 

Strengthening of RC structures with TRM is a promising technique that can be as 

effective as epoxy-based FRP systems. The use of TRM provides better interaction 

between the cement-based mortars used and the concrete substrate. Additionally, it is 

more compatible with the typical construction workers’ skills being a trowel-trade. 

However, many parameters that might influence the performance of TRM-

strengthening need to be thoroughly investigated. Their effects on the performance of 

the structure have not been fully documented. Examples include the existing steel 

reinforcement ratio, different TRM system having different volume fraction, stiffness 

(EA) of TRM system and the strengthening scheme, etc.  

Research studies on TRM as a strengthening material are relatively recent compared 

to those on FRP strengthening system. Such studies need to provide more 

understanding of the performance of TRM-strengthened structures. The current 

research aims at contributing to such research to add the knowledge on TRM as a 

strengthening technique. It is believed that the findings of this research will provide 

practicing engineers and contractors with new perspectives in the rehabilitation field. 
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2.5 Objectives of the present work 

The main objectives of this research are:  

1. Investigating experimentally the feasibility of using the TRM systems to 

upgrade the service flexural performance and the ultimate capacity of 

reinforced concrete beams  

2. Investigating the parameters (steel reinforcement ratio, stiffness of TRM 

system and amount of TRM) that most influence the flexural performance of 

reinforced concrete beams strengthened with TRM. 

3. Attempting to optimize the configuration of the TRM strengthening technique 

in terms of the type of TRM used and the number of layers of fabrics while 

altering the original steel reinforcement ratio of the beam specimens.  

4. To verify the ACI-549 [10] by making the theoretical model. 

2.6 Methodology  

The proposed program aims at investigating the flexural performance of reinforced 

concrete beams strengthened with TRM systems. The tests were carried out on a 

medium-scale reinforced concrete beams. The detailed design of the beam specimen 

was accomplished in early stages of the testing program. The beams strengthened 

with TRM systems were tested under monotonic loading. Un-strengthened beams 

served as control specimens.  

The aim here is investigating the static flexural performance of RC beams 

strengthened with the TRM systems and to quantify the effect of various parameters 
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on their performance. The mechanical behavior of the TRM material system used to 

strengthen the beams was also assessed. Un-strengthened and strengthened beams 

were tested under four-point monotonic loading. Tests were performed under 

displacement control mode with a loading rate of 1mm / min until failure occurs. The 

following three parameters were investigated in this research. 

1. Steel reinforcement ratio 

The beam specimens were designed according to the ACI-318 provisions. Three 

reinforcement ratios determined as percentages of the balanced ratio of the studied 

cross section were considered. The ratios simulated two cases of in-service beams; 

namely, (a) flexure-deficient beams with flexural capacities less than the minimum 

capacity specified by the code. These beams were designed with a steel ratio well 

below the balanced value and (b) typical under-reinforced beams that need to be 

upgraded to accommodate the anticipated increase in-service load. The selection of 

the number of bars associated with each reinforcement ratio was part of the initial 

design of the parameters at the beginning of the work. The outcome of testing these 

beams aims to quantify the efficiency of TRM in strengthening RC beams with 

various reinforcement ratios. Results focused on quantifying the efficiency of TRM in 

upgrading the serviceability and the capacity of the strengthened beams.  

 

2. TRM system 

Beam specimens were strengthened with two TRM types, namely the carbon- and 

PBO- TRM systems. The strengthening technique was applied to the soffit of the 
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beam (flat-shape). Test results compared the efficiency of each system in enhancing 

the ductility and load capacity of the strengthened beams. Prior to strengthening, the 

concrete substrate was prepared and recommendation for best practices for concrete 

surface preparation has also been given. 

  
3. Volume fraction of TRM 

Different volume fractions of TRM were achieved by altering the number of layers 

(one layer of carbon (𝐸𝐸)𝑐1 =12.56 kN/mm , two layers of carbon (𝐸𝐸)𝑐2 =25.12 

kN/mm , three layers of carbon (𝐸𝐸)𝑐3 = 37.68 kN/mm , one layer of PBO 

(𝐸𝐸)𝑃𝑃𝑃1 =6.4 kN/mm  and two layers of PBO (𝐸𝐸)𝑃𝑃𝑃2 =12.8 kN/mm) of textile 

that are embedded in the mortar. Volume fractions have been assessed according to 

enhancement level in the ultimate capacity of beams strengthened with one layer of 

textile. The ductility and energy absorption values were also determined by altering 

the number of layers of fabric / textile and were compared between the two TRM 

systems. 
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CHAPTER 3 
EXPERIMENTAL PROGRAM 
 
This chapter provides details on material characterization tests performed on all the 

materials. Furthermore, the preparation of beam specimens and the procedure adopted 

for the strengthening technique application has also been highlighted. 

3.1 Material characterization 

In this section the material properties used in the experimental program of TRM 

strengthened beams are discussed.  

3.1.1 Concrete and steel reinforcement 

Ready mix concrete with a compressive strength of 67 MPa was used to cast the 

beam specimens. All the beams were casted using the same transit mixer (Figure 6) at 

one time. For each cubic meter, the mixture proportions were 1,100 kg of gravel, 800 

kg of sand, 370 kg of ordinary Portland cement and 167 L of water. The total density 

was 2466 kg/m3. The water-to-cement (W:C) ratio was kept at 0.45.  

 

Figure 6: Ready mix Concrete (Transit Mixer) 
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Eight standard concrete cylinders having dimensions of 150mm in diameter and 

300mm in height to evaluate the compressive strength of concrete. Also, six prisms 

(100 x 100 x 500 mm) were tested to measure the flexural strength (modulus of 

rupture) of concrete. Flexural strength can be determined by 𝜎𝑓 = 3𝑃𝑃
4𝑏𝑑2

. The samples 

were tested  (Figure 7) after five months from the day of casting as the beams were 

also tested after four to six months respectively after applying the appropriate 

strengthening techniques. The average flexural and compressive strength is presented 

in Tables 4 and 5 respectively.  

 

a)  b)  

Figure 7: Apparatus to measure a) Compressive strength and b) Flexural strength    
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Table 4: Measured flexural strength of concrete specimens 

Specimen Type Peak 
Flexural 

Load (kN) 

Flexural 
Strength (MPa) 

Mean Flexural 
strength   
(MPa) 

Standard 
deviation 

(MPa) 

Concrete Prism 

(100 x 100 x 
500) mm 

23.345 8.75 

9.63 0.62 

26.898 10.08 

23.591 8.85 

26.015 9.76 

27.727 10.39 

26.602 9.96 

  

Table 5: Measured compressive strength of concrete specimens 

Specimen type 
Compressive 

strength 
(MPa) 

Mean 
compressive 

strength (MPa) 

Standard 
deviation 

(MPa) 

 Concrete Cylinders 
(D = 150 mm) 
(H = 300 mm) 

66.39 

67.46 1.64 

65.61 
69.00 
70.18 
67.06 
66.52 
65.71 
69.20 

 

 

Steel bars (of diameter of 8, 10, 12 and 16 mm) were used for the steel reinforcement 

in the construction of beams (Figure 8). The bars of diameter 8 mm were used for all 

transverse steel reinforcement (stirrups) and also used in the compression 

reinforcement for all the beams, while the 10, 12 and 16 mm bars were used for the 
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main flexural reinforcement. The properties of steel reinforcement are illustrated in 

Table 6 [40]. 

 

Figure 8: Steel rebars  

Table 6: Properties of steel reinforcement 

Bar No. 
Nominal 

Area (mm2) 

Yield 

Strain 

Yield Stress 

(MPa) 

Ultimate Stress 

(MPa) 

Modulus of 

Elasticity (GPa) 

8 mm 50.2 0.00268 512 551 191 

10 mm 78.5 0.00267 515 555 193 

12 mm 113.1 0.00268 519 553 194 

16 mm 201.1 0.00266 525 560 197 

 

 

3.1.2 Textile reinforced mortar (TRM) 

The TRM systems consist of two main elements, a cementitious matrix and a fiber 

network or mesh (fabric). Two commercially available TRM systems have been 
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utilized in this study. The first system is the Ruredil X Mesh Gold and the second one 

is the Carbon fiber Armo Mesh L600 with Sika Mono top-612 Mortar.  

The Ruredil X Mesh Gold system comprises of a Polyparaphenylene benzobisoxazole 

(PBO) mesh and a stabilized inorganic matrix (Ruredil X Mortar M750). 

3.1.2.1 Textile properties 

Textile contain fabric meshes made of long woven, knitted or even unwoven fiber 

rovings in typically two orthogonal direction, consisting of primary direction (PD) and 

secondary direction (SD).The orientation of the main fabrics in the textile 

reinforcement is an important feature that has to be taken into account. In case of 

carbon fiber ARMO Mesh L600, the applied forces are resisted by the fibers which 

run in Primary direction (PD) whereas in the case  PBO  textile , the applied forced 

are resisted by fibers both in primary as well as in secondary direction. The carbon 

and PBO fabrics used in the experiment can be seen in Figure 9. 

 
 

a)    b)  

Figure 9: Textile fabric used: (a) Carbon, (b) PBO 

The properties of TRM fabrics system are shown in Table 7 and Table 8 respectively.  
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Table 7: Properties of fabrics used in the TRM system [41], [42] and [10] 

 

Table 8: Mesh properties of fabrics used in the TRM system [41], [42]. 

 

3.1.2.2 Mortar characterization (ASTM C109) 

Test specimens of cubes of size 50 mm were prepared with test cubes as per ASTM 

C109 [43] (Figure 10-a). The specimens were prepared by hand tamping the mortar in 

two layers during casting, after mechanical mixing the mortar matrix. Mix design and 

mixing procedure adopted was based on the manufacturers’ recommendation. 

Immediately upon completion of molding, the mold was placed in a moist room for 

24 hours. The specimens were removed from the mold after 24 hours and were cured 
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in water for 7 days and 28 days compressive strength. Two mortar types are studied 

here: Sika MonoTop-612 and Ruredil X Mortar 750. The test set-up on the 

compression testing machine is shown in Figure 10-b. The test results are presented in 

Table 9. 

Table 9: Measured compressive strength of mortars used in TRM composites 

Mortar type Test 
day 

Compressive 
strength 
(MPa) 

Mean 
compressive 

strength (MPa) 

Standard 
deviation 

(MPa) 

Sika MonoTop-612 

7-day 

11.328 

13.315 1.846 
11.340 
15.132 
14.684 
14.092 

28-day 

20.416 

19.674 1.112 
19.360 
18.384 
19.044 
21.168 

Ruredil X Mortar 
750  

7-day 

23.332 

23.810 1.237 
22.996 
24.944 
25.292 
22.488 

28-day 

26.544 

29.062 2.094 

31.532 

30.820 

28.732 

27.684 
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(a)                                                           (b)  

Figure 10: Compressive strength test of mortar, ASTM C109: (a) Test mold, (b) Test set-up 

 

3.2 Detailing of beam specimens 

A total of eighteen beam specimens were used in this research. Three beams were 

used as control specimens having the main rebar of 2D10, 2D12 and 2D16 

respectively. The beams were designed in such a way that they will be having a pure 

flexural failure while testing. The effective depth of the beam is fixed (d=210 mm) 

for all the three types of beam specimens by differing in the concrete cover (at the 

bottom sides) of 37, 36 and 34 mm for 2 D10, 2 D12 and 2 D16 specimens 

respectively. The detailed sections of beam specimens having the main longitudinal 

rebar of 2 D10, 2 D12 and 2D16 are shown in Figure 11(a, b and c) respectively. 

 

 

 



 
 

38 
 

 
a) Longitudinal and mid span cross-section of 2 D10 specimen (Dimensions are in mm) 

 
b) Longitudinal and mid span cross-section of 2 D12 specimen (Dimensions are in mm)  
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c) Longitudinal and mid span cross-section of 2 D16specimen (Dimensions are in mm)  

Figure 11: Longitudinal and mid span cross-section a) 2 D10 b) 2 D12 c) 2 D16 

3.2.1 Detailing of strengthened beam specimens 

The strengthening technique is applied so that the textiles are sandwiched between the 

two layers of cementitious mortar. The total thickness of the TRM mortar layer 

ranged from 10 to 18 mm (10 mm thickness for single layer, 15 mm for double layer 

and 18 mm for three layers of textile respectively). The details are given in Section 

3.6. The longitudinal and a mid-span cross section of a typical TRM strengthened 

beam specimen is shown in Figure 12. All the dimensions are in mm. 
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Figure 12: Longitudinal and mid span cross-section of strengthened specimen 

3.3 Test matrix 

Table 10 shows the test matrix for all the beam specimens. 

3.4 Preparation of beam specimens 

This section describes the preparation of beam specimens by focusing on each part 

separately. Further, applying of strengthening technique had also been discussed in 

this section.  

Grinding of the rebar surface 

Before casting the beams, the strain gauges were installed on the rebars. In order to 

install strain gauges on steel rebar, the surface of rebar should be smooth / flat enough 

so that the strain gauge will have the maximum contact area to the rebar. 
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Table 10: Test matrix for RC beam specimens 

No. Beama TRM 
type Reinforcement No. of 

Layers 
𝝆𝒔 

(%) 

(𝑬𝑬)𝒇 

(kN/mm) 
Strengthenin

g scheme 

1 R1 - 2D10 - 0.50 - - 

2 R2 - 2D12 - 0.72 - - 

3 R3 - 2D16 - 1.27 - - 

4 C-R1-V1-F Carbon 2D10 1 0.50 12.56 Full-length 

5 C-R1-V2-F Carbon 2D10 2 0.50 25.12 Full-length 

6 C-R1-V3-F Carbon 2D10 3 0.50 37.68 Full-length 

7 C-R2-V1-F Carbon 2D12 1 0.72 12.56 Full-length 

8 C-R2-V2-F Carbon 2D12 2 0.72 25.12 Full-length 

9 C-R2-V3-F Carbon 2D12 3 0.72 37.68 Full-length 

10 C-R3-V1-F Carbon 2D16 1 1.27 12.56 Full-length 

11 C-R3-V2-F Carbon 2D16 2 1.27 25.12 Full-length 

12 C-R3-V3-F Carbon 2D16 3 1.27 37.68 Full-length 

13 P-R1-V1-F PBO 2D10 1 0.50 6.4 Full-length 

14 P-R2-V1-F PBO 2D12 1 0.72 6.4 Full-length 

15 P-R3-V1-F PBO 2D16 1 1.27 6.4 Full-length 

16 P-R1-V2-F PBO 2D10 2 0.50 12.8 Full-length 

17 P-R2-V2-F PBO 2D12 2 0.72 12.8 Full-length 

18 P-R3-V2-F PBO 2D16 2 1.27 12.8 Full-length 

Note: 𝜌𝑠 = longitudinal steel reinforcement ratio, 𝜌𝑠 =As / bd 

aC is for Carbon textile, P is for PBO textile, R1 is for D10, R2 is for D12, R3 is for D16, V1 is for 1 

layer of textile, V2 is for 2 layers of textile and V3 is for 3 layers of textile. 
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Now the grinding of the rebar can be done either by sand paper, hand grinder or by 

using any other technique. HILTI grinder was used for grinding the rebar surfaces 

(Figure 13). 

a)      b)     

Figure 13: a) Grinding the steel rebars, b) Grinded steel rebars 

Fixing / placing of steel rebars 

After grinding all the required rebar, they were assembled according to the required 

design in order to form steel cages (Figure 14). 

 

Figure 14: Steel cages 
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Installation of strain gauges 

Strain gauges were installed in the middle of each bottom bar to measure the strains at 

mid-span of beams during the test. Two strain gauges were attached to bottom rebars. 

The insulation tape was wrapped around the strain gauge (Figure 15) in order to 

protect the strain gauge while casting of concrete.  

 

Figure 15: Fixing of strain gauges 

Casting of beam specimens 

Finally the steel cages were placed into the wooden formwork (Figure 16) by taking 

into consideration that the wires of strain gauges were not damaged while placing 

them in wooden formwork and while during casting of concrete. 

 

Figure 16: Steel reinforcement cages inside the wooden form work 



 
 

44 
 

Before casting the beam specimens, wooden formwork was cleaned using 

compressed air to make sure that there was no dust and the contact surface between 

the concrete and the formwork was clean. Further, during casting, a vibrator (Figure 

17) was used to make proper compaction of concrete and to avoid any air bubbles. 

a)  b)  

Figure 17: Casting of beams a) use of vibrators; b) Finishing of concrete  

Curing of the specimens 

In the process of curing, the concrete is sheltered from loss of moisture and kept in a 

reasonable temperature range. Gain in strength and decrease in the permeability is the 

main result of this process. Cracks can be mitigated during the curing process which 

strictly impacts durability. Open access for harmful materials is allowed by the cracks 

to avoid the low permeability concrete near the surface.  

All the specimens were cured for 28 days after casting stage in order to achieve the 

required compressive strength of concrete. The beams were covered with hessian 

cloth and were placed under a shaded area (Figure 18). Water was sprinkled over the 

specimens twice a day for 28 days. After the curing period, all specimens were kept 

in shaded area before the test day. 
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Figure 18: Curing of beam specimens 

Concrete substrate abrasion technique adopted in this research 

Sand blasting technique was used in this research for the roughening of all the beam 

specimens. In order to apply the strengthening technique to the soffit of the beam, the 

bottom surface was roughened to have a good contact between the concrete substrate 

and the strengthening TRM layer. Figure 19 shows the sand blasted beam specimen. 

a)  b)  

 Figure 19: Roughened concrete surfaces a) and b) 
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3.6 Steps for strengthening of concrete beams 

Pre-saturation of beams 

Before application of strengthening technique, the contact surface of the beam 

specimen should be saturated surface dry. For this purpose, the beams were covered 

with hessian cloth (Figure 20) and water was sprinkled over the beam for at least 40 

minutes prior to application of the mortar layer. 

 

Figure 20: Saturating the beam specimens prior of strengthening 

 

Mixing of mortar 

Electric mixer (Figure 21) was used to mix the mortar with water according to the 

specifications given for each mortar type respectively.  
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Figure 21: Mixing of mortar 

Laying of mortar and textile layers 

The textile was placed so that it should be sandwiched between the layers of mortar. 

The first layer of mortar was laid with a thickness of approximately 5mm and the 

textile was placed over this mortar layer so that it was impregnated (Figure 22) inside 

the mortar. The second layer of 5 mm thickness was applied over the textile with 

proper finishing.  

For multi-layer TRM specimens, mortar having a thickness of 3 to 4 mm was 

provided between textile layers (Figure 23, 24). 

 The final layer of mortar (having the thickness of 2 to 3 mm) was applied with 

proper finishing (Figure25). Afterwards, the strengthened layer was allowed to cure 

for 28 days in order to achieve the maximum strength of mortar. Similar technique 

was used for both the carbon and PBO TRM systems. 
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a)      b)  

Figure 22: a) Mortar laying over concrete surface and b) First layer of textile over mortar 

a)      b)   

Figure 23: a) Laying the second layer of mortar and b) Textile over the second mortar layer 
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a)        b)  

Figure 24: a) Laying the third layer of mortar and b) Textile over the third mortar layer 

 

 

 

 

 

 

 

 

Figure 25: Final layer of mortar laying and finishing  
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3.7 Test set-up and instrumentation 

The detail of the loading pattern adopted for all the specimens is illustrated in Figure 

26. The test was performed under displacement control mode with loading rate of 1 

mm / min. Displacement measurements at the mid-span of the specimen were 

measured using displacement transducers. Two strain gauges (TML FLA-5-11) 

reading for the rebars were made at the mid-span location. Concrete strain gauge 

(TML PL-60-11) was attached at the top of the concrete beam mid-span location. The 

measurements were recorded using a data acquisition system TC-32K data logger 

with CSW-5B switch-box (Figure 28) at a frequency of 1Hz. The test beam mounted 

in Instron 1500HDX Static Hydraulic Universal Testing machine along with the 

displacement transducers and data acquisition system is shown in Figure 29. 

 

Figure 26: Detail of loading pattern 
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Figure 27:  Instron 1500HDX Static Hydraulic Universal Testing Machine (Front View) 

 

 

Figure 28: Data acquisition system TC-32K data logger with CSW-5B switch-box 

 

http://www.qu.edu.qa/engineering/civil/images/facilities/Structural_lab/2.jpg
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Figure 29: Beam mounted in Instron 1500HDX Static Hydraulic Universal Testing Machine along 

with the displacement trasnducers and data acquisition system 

  

http://www.qu.edu.qa/engineering/civil/images/facilities/Structural_lab/2.jpg
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 

The detailed test results of each specimen are discussed in this chapter. The test 

results include the graphs of load vs displacement, steel strain and concrete strain 

respectively. Load values were recorded using the load cell attached to the Instron 

testing machine. Average of the two steel strain readings recorded for the two bottom 

rebars have been plotted. The crack pattern and mode of failure of each specimen has 

also been reported. 

Tables 11 and 12 show the summary of all the test results. Column 3 and 4 in Table 

11 list the ultimate load carrying capacity (Pu) for each specimen and gain in Pu (in 

terms of strengthened beams). The yield load values are listed in Column 2 of Table 

11. Ductility Index (∆𝑰) and energy absorption (Ѱ) values for all the specimens are 

shown in Table 12 and their details are given in section 4.17.2 and 4.17.3 

respectively. Moreover, the sample calculation to calculate the ductility Index and 

Energy absorption has also been shown in Appendix C.  

The name of the beam specimens were categorized based on the reinforcement ratio 

and the number of layers of textile; C is for Carbon textile, P is for PBO textile, R1 is 

for D10, R2 is for D12, R3 is for D16, V1 is for 1 layer of textile, V2 is for 2 layers of 

textile and V3 is for 3 layers of textile. 

Different modes of failure (F+C, F+T+C, F+S+C, F+L+C) were observed while 

testing the strengthened specimens. F+C is for flexural failure with yielding of steel 
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rebar having concrete crushing as final mode of failure; F+T+C is for flexural failure 

associated with textile slippage at the mid span followed by the concrete crushing; 

F+S+C is flexural failure associated with the TRM separation from concrete substrate 

and crushing of the concrete and F+L+C is flexural failure associated with cracking 

within TRM layer as well as slippage of textile followed by the crushing of concrete. 

Column 5 in Table 11 depicts the mode of failure. 

The effects of different studied parameters on these quantities are discussed in later 

sections. The detailed discussion of the test results, mode of failure and the crack 

pattern of each specimen is provided in the sections below.  

4.1 Control specimens (R1, R2 & R3) 

The three control specimens R1, R2 and R3 showed the standard response 

characteristics of pure flexural failure for under–reinforced beams (Figure 30). They 

failed in flexure with the yielding of steel rebar through the formation of wide 

flexural cracks at the mid span with the concrete crushing as the final mode of failure  

(Figure 31). The tests were stopped at approximately 30-50% reduction in the 

maximum recorded load. The ultimate loads recorded were 47.90 kN, 69.13 kN and 

110.84 kN at a displacement of 36.5 mm, 43.46 mm and 39.51 mm for R1, R2 and R3 

specimens respectively. 
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Table 11: Summary of test results 

1 2 3 4 5 

Specimen 
Yield Load     

Py (kN) 

Ultimate 
Load       

Pu (kN) 
Gain in            
Pu (%) 

 

Mode of failurea 

R1 41.21 47.895 N.A F+C 

R2 61.54 69.14 N.A F+C 

R3 90.78 110.32 N.A F+C 

C-R1-V1-F 50.12 66.084 37.97 F+T+C 

C-R1-V2-F 51.64 72.94 52.29 F+T+C 

C-R1-V3-F 59.62 80.40 67.85 F+S+C 

C-R2-V1-F 66.18 85.15 23.13 F+T+C 

C-R2-V2-F 77.32 89.12 28.90 F+T+C 

C-R2-V3-F 70.53 122.71 77.51 F+S+C 

C-R3-V1-F 108.15 126.17 14.40 F+T+C 

C-R3-V2-F 107.27 142.29 28.97 F+T+C 

C-R3-V3-F 112.19 160.36 45.41 F+S+C 

P-R1-V1-F 41.25 59.72 24.69 F+L+C 

P-R1-V2-F 52.76 79.74 66.49 F+L+C 

P-R2-V1-F 62.36 84.68 22.47 F+L+C 

P-R2-V2-F 67.91 88.15 27.51 F+L+C 

P-R3-V1-F 105.7 117.6 6.60 F+L+C 

P-R3-V2-F 101.6 123.86 12.31 F+L+C 

aF+C is for flexural failure with yielding of steel rebar having concrete crushing as final mode of failure; 

F+T+C is for flexural failure associated with textile slippage at the mid span followed by concrete 

crushing; F+S+C is flexural failure associated with the TRM separation from concrete substrate and 

crushing of the concrete and F+L+C is flexural failure associated with cracking within TRM layer as well 

as the slippage of textile followed by the crushing of concrete 
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Table 12: Summary of test results (Continued) 

1 6 7 8 9 

 

Specimen 

𝜹𝒀 

(mm) 

𝜹𝒖 

(mm) 
Ductility Index  

(∆𝑰) 
Energy Absorption 

Ѱ (kN-mm) 

R1 15.03 36.49 2.43 1491.7 

R2 7.14 43.46 6.09 2724.9 

R3 8.8 39.51 4.49 3692.1 

C-R1-V1-F 8.38 20.33 2.43 998.7 

C-R1-V2-F 7.74 17.29 2.23 1132 

C-R1-V3-F 8.15 24.17 2.97 1485 

C-R2-V1-F 8.02 19.33 2.41 1210.7 

C-R2-V2-F 11.91 17.97 1.51 1358.8 

C-R2-V3-F 7.99 26.33 3.30 1623.8 

C-R3-V1-F 10.50 20.93 1.99 1959.3 

C-R3-V2-F 10.29 18.81 1.83 2025.4 

C-R3-V3-F 10.06 24.53 2.44 2719.5 

P-R1-V1-F 6.7 35.14 5.24 1665.1 

P-R1-V2-F 5.61 36.52 6.51 2323.2 

P-R2-V1-F 8.05 40.45 5.02 2804.2 

P-R2-V2-F 8.38 34.56 4.12 2980.1 

P-R3-V1-F 10.13 21.54 2.13 2266.5 

P-R3-V2-F 10.39 30.15 2.90 2943.2 
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Figure 30: Load –deflection curve for control specimens R1, R2 and R3 

 

 

(a) Control specimen R1(Values shown are in kN) 
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(b) Control specimen R2 (Values shown are in kN) 

 
(c) Control specimen R3 (Values shown are in kN) 

Figure 31: Modes of failure and crack patterns for control beam specimens R1, R2 and R3 

4.2 Specimen C-R1-V1-F 

C-R1-V1-F beam specimen used 2D10 as the main longitudinal reinforcement and 

was strengthened with carbon TRM system using one layer of carbon textile (𝐸𝐸)𝑐1 =

12.56 𝑘𝑁/𝑚𝑚.  The load-displacement relationship, along with its associated control 

specimen is shown in Figure 32-a while load versus steel and concrete strains are 
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shown in Figure 32- b and 32-c respectively. The first crack appeared in the middle of 

the specimen at 21kN and then the cracks spread evenly at both sides (Figure 33). The 

steel reinforcement started to yield at around 0.24% strain as shown in Figure 32-b. 

The corresponding yield flexural load for this beam was 50.12kN. The ultimate load 

recorded for the beam was 66.08kN and the load dropped afterwards. The mode of 

failure observed in this specimen was flexural failure associated with textile rupture at 

the mid span as well as concrete crushing (F+T+C). The gain in ultimate load was 

37.97 % with respect to the control specimen. Slippage and breaking of steel strain 

gauge occurred after initiation of rebar yielding.  

a)  b)    

c)   

Figure 32: Test results for specimen C-R1-V1-F a) load vs displacement; b) load vs steel strain and c) 

load vs concrete strain 
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Figure 33: Mode of failure and crack patterns for test beam C-R1-V1-F (Values are in kN) 

4.3 Specimen C-R1-V2-F 

C-R1-V2-F beam specimen used 2D10 as the main longitudinal reinforcement and 

was strengthened with carbon TRM system using two layers of carbon textile 

(𝐸𝐸)𝑐2 = 25.12 𝑘𝑁/𝑚𝑚 . The load-displacement relationship, along with its 

associated control specimen is shown in Figure 34-a while load versus steel and 

concrete strains are shown in Figure 34- b and 34-c respectively. The beam reached 

yield at 51.64 kN and the displacement recorded at the yield load was 7.74 mm. The 

ultimate load recorded was 72.94 kN and then the load dropped suddenly afterwards. 

The gain in the ultimate load was 52.29% with respect to the control specimen. The 

observed mode of failure was the flexural failure associated with textile rupture at the 

mid span as well as concrete crushing (F+T+C) as shown in Figure 35. 
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a) b)  

c)   

Figure 34: Test results for specimen C-R1-V2-F a) load vs displacement; b) load vs steel strain and c) 

load vs concrete strain 

 

 

 
Figure 35: Mode of failure and crack patterns for test beam C-R1-V2-F (Values are in kN) 
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4.4 Specimen C-R1-V3-F 

C-R1-V3-F beam specimen used 2D10 as the main longitudinal reinforcement and 

was strengthened with carbon TRM system using two layers of carbon textile 

(𝐸𝐸)𝑐3 = 37.68 𝑘𝑁/𝑚𝑚 . The load-displacement relationship, along with its 

associated control specimen is shown in Figure 36-a while load versus steel and 

concrete strains are shown in Figure 36- b and 36-c respectively. The yield and 

ultimate load recorded were 59.62kN and 80.39kN respectively. Load dropped twice 

prior to reaching the ultimate load. The first load-drop occurred due to formation of 

cracks within the TRM layer and the second drop of the load was due to the initiation 

of slip between the TRM layer and the concrete substrate. The observed mode of 

failure was the flexural failure associated with the TRM slippage from concrete 

substrate (F+S+C) up to the support on the right side of the beam specimen (Figure 

37) and was followed by concrete crushing. The gain in the ultimate capacity was 

67.85% to that of  the control specimen. Slippage and breaking of steel strain gauge 

occurred after initiation of rebar yielding. The concrete was crushed prior to reaching 

the maximum concrete strain value.  
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c)  

Figure 36: Test results for specimen C-R1-V3-F a) load vs displacement; b) load vs steel strain and c) 

load vs concrete strain 

 

Figure 37: Mode of failure and crack patterns for test beam C-R1-V3-F (Values are in kN) 
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versus mid span deflection curve is shown in Figure 38-a along with the control 

specimen R2. Steel and concrete strain relationship with the applied load are shown in 

Figure 38-b and 38-c respectively. The first crack occurred at 24kN and then the 

cracks spread equally at both sides (Figure 39). The beam reached yield at 66.18kN. 

However, at maximum load of 85.15kN, the beam failed due to the flexural failure 

associated with textile rupture at the mid span as well as concrete crushing (F+T+C). 

The gain in the ultimate load was 23.13% with respect to its control specimen. At 

failure, the flexural capacity dropped down suddenly followed by concrete crushing.  

a)  b)  

c)  

Figure 38: Test results for specimen C-R2-V1-F a) load vs displacement; b) load vs steel strain and c) 

load vs concrete strain 
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Figure 39: Mode of failure and crack patterns for test beam C-R2-V1-F 

4.6 Specimen C-R2-V2-F 

C-R2-V2-F beam specimen used 2D12 as the main longitudinal reinforcement and 

was strengthened with carbon TRM system using two layers of carbon textile 

(𝐸𝐸)𝑐2 = 25.12 𝑘𝑁/𝑚𝑚 . The load-displacement relationship, along with its 

associated control specimen is shown in Figure 40-a while load versus steel and 

concrete strains are shown in Figure 40- b and 40-c respectively. The first crack 

appeared at 31kN near the mid span (Figure 41) and then the cracks spread at both 

sides of the beam. The mode of failure observed was the flexural failure associated 

with textile rupture at the mid span followed by the concrete crushing (F+T+C). The 

yield and ultimate load recorded were 77.3 kN and 89.12 kN respectively. The gain in 

the ultimate load was 28.90 % of that of the control specimen R2.  
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a) b)  

c)  

Figure 40: Test results for specimen C-R2-V2-F a) load vs displacement; b) load vs steel strain and c) 

load vs concrete strain 

 

 

Figure 41: Mode of failure and crack patterns for test beam C-R2-V2-F (Values are in kN) 
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4.7 Specimen C-R2-V3-F 

C-R2-V3-F specimen having the main longitudinal reinforcement of D12 was 

strengthened with three layers of carbon TRM system (𝐸𝐸)𝑐3 = 37.68 𝑘𝑁/𝑚𝑚. Load 

versus mid span deflection curve is shown in Figure 42-a along with the control 

specimen R2. Steel and concrete strain relationship with the applied load are shown in 

Figure 42-b and 42-c respectively. Before reaching the ultimate value, load dropped 

due to the formation of cracks within the TRM layer and the initiation of slippage 

between the TRM layer and the concrete substrate. After failure, the load dropped 

suddenly due to the complete slippage between the TRM and concrete substrate. So, 

the observed mode of failure was the flexural failure associated with the TRM 

slippage from concrete substrate and crushing of the concrete (F+S+C). Wide flexural 

cracks occurred from TRM substrate towards the point of application of load on the 

left side of the beam specimen (Figure 43). The test was stopped for safety as the 

deflection of the beam was more than 60mm. The ultimate load value was increased 

to 122.71kN and the yield value was also increased to 70.53kN. The increase in the 

ultimate load was 77.51% with respect to the control specimen R2. Also, the steel 

strain gauge slips at higher load, so the yield load value had not been captured by the 

strain gauge. 
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a) b)   

 

c)  

Figure 42: Test results for specimen C-R2-V3-F a) load vs displacement; b) load vs steel strain and c) 

load vs concrete strain 

 

Figure 43: Mode of failure and crack patterns for test beam C-R2-V3-F (Values are in kN) 
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4.8 Specimen C-R3-V1-F 

C-R3-V1-F beam specimen used 2 D16 as the main longitudinal reinforcement and 

was strengthened with carbon TRM system using one layer of carbon textile (𝐸𝐸)𝑐1 =

12.56 𝑘𝑁/𝑚𝑚. The load-displacement relationship, along with its associated control 

specimen is shown in Figure 44-a while load versus steel and concrete strains are 

shown in Figure 44- b and 44-c respectively. The first crack appeared at 33kN in the 

middle of the specimen. At ultimate load, the load drops suddenly due to the rupture 

of textile at the mid span. The observed mode of failure was the flexural failure 

associated with textile rupture at the mid span (F+T+C) followed by the crushing of 

concrete (Figure45). The respective yield and ultimate load values were 108.15kN 

and 126.17kN. The gain in the ultimate load was 14.40% of the control specimen R3.  
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c)  

Figure 44: Test results for specimen C-R3-V1-F a) load vs displacement; b) load vs steel strain and c) 

load vs concrete strain 

 

 

Figure 45: Mode of failure and crack patterns for test beam C-R3-V1-F (Values are in kN) 
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specimen R3. Steel and concrete strain relationship with the applied load are shown in 

Figure 46-b and 46-c respectively. The first crack appeared at 32kN in the middle of 

the beam specimen. The respective yield and ultimate load values were 107.27kN and 

142.29kN respectively. The gain in the ultimate load was 28.97% with respect to the 

control specimen R3. At ultimate load, the load dropped suddenly due to textile 

slippage and the mode of the failure observed was the flexural failure associated with 

textile rupture at the mid span as well as concrete crushing (F+T+C) at the top of the 

beam specimen (Figure 47).  

a) b)  

c)  

Figure 46: Test results for specimen C-R3-V2-F a) load vs displacement; b) load vs steel strain and c) 

load vs concrete strain 
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Figure 47: Mode of failure and crack patterns for test beam C-R3-V2-F (Values are in kN) 

4.10 Specimen C-R3-V3-F 

C-R3-V3-F beam specimen used 2 D16 as the main longitudinal reinforcement and 

was strengthened with carbon TRM system using three layers of carbon textile 

(𝐸𝐸)𝑐3 = 37.68 𝑘𝑁/𝑚𝑚 . The load-displacement relationship, along with its 

associated control specimen is shown in Figure 48-a while load versus steel and 

concrete strains are shown in Figure 48- b and 48-c respectively. With three layers of 

carbon textile, a remarkable increase in the ultimate and yield load was observed. The 

yield and ultimate load values were 112.19 kN and 160.36 kN respectively. The gain 

in the ultimate load was 45.41% of control specimen R3. Even after the ultimate load 

value, there was no sudden drop in the load value. Slippage occurred between TRM 

layer (Figure 48) and concrete substrate on the left side of beam specimen at higher 

deformation levels, which was the final mode of failure followed by the concrete 

crushing (F+S+C). The test was stopped for safety as the deflection had gone beyond 

60 mm.  
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 a)  b)  

c)  

Figure 48: Test results for specimen C-R3-V3-F a) load vs displacement; b) load vs steel strain and c) 

load vs concrete strain 

 

 

Figure 49: Mode of failure and crack patterns for test beam C-R3-V3-F (Values are in kN) 
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4.11 Specimen P-R1-V1-F 

P-R1-V1-F specimen having the main longitudinal reinforcement of D10 was 

strengthened with one layer of PBO TRM system (𝐸𝐸)𝑃𝑃𝑃1 = 6.4 𝑘𝑁/𝑚𝑚 . Load 

versus mid span deflection curve is shown in Figure 50-a along with the control 

specimen R1. Concrete strain relationship with the applied load is shown in Figure 

50-b.Steel strain gauges were not working in this specimen due to the slippage of 

strain gauges from steel rebars while applying the vibrator during casting of concrete. 

The ultimate load recorded was 59.72 kN at a displacement of 35.14 mm and then the 

load dropped suddenly. The gain in the ultimate load capacity was 24.7% of control 

specimen R1. After this sudden drop, the load tends to increase as well, but could not 

reach to the maximum value and then decreased gradually until the textile ruptured 

which was the final mode of the failure (Figure 51). At a load of 52 kN, the cracks 

started to appear within the mortar layer, but it did not go towards the bond failure. 

a) b)  

Figure 50: Test results for specimen P-R1-V1-F a) load vs displacement  

and b) load vs concrete strain 
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Figure 51: Mode of failure and crack patterns for test beam P-R1-V1-F (Values are in kN) 

4.12 Specimen P-R1-V2-F 

P-R1-V2-F beam specimen used 2 D10 as the main longitudinal reinforcement and 

was strengthened with PBO TRM system using two layers of PBO textile (𝐸𝐸)𝑃𝑃𝑃2 =

12.8 𝑘𝑁/𝑚𝑚. The load-displacement relationship, along with its associated control 

specimen is shown in Figure 52-a while load versus steel and concrete strains are 

shown in Figure 52- b and 52-c respectively. The first crack appeared at 28kN just in 

the middle of the specimen.  The beam reached the yield at 52.76kN while the 

slippage of steel strain occurred at higher loads. The ultimate load recorded was 

79.74kN and the gain in the ultimate load capacity was 66.5% with respect to the 

control specimen R1. At 64kN cracks tend to appear within the mortar layer and at 

79kN, the bond slippage occurred between the concrete substrate and mortar layer 

(Figure 53). A wider crack appeared near to the center of the beam leading towards 

the failure of mortar layer. The observed mode of failure was the flexural failure 
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associated with cracking within TRM layer followed by the crushing of concrete 

(F+L+C).  

a)   b)    

c)  

Figure 52: Test results for specimen P-R1-V2-F a) load vs displacement; b) load vs steel strain and c) 

load vs concrete strain 

 

Figure 53: Mode of failure and crack patterns for test beam PR1V2F (Values are in kN) 
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4.13 Specimen P-R2-V1-F 

P-R2-V1-F specimen having the main longitudinal reinforcement of D12 was 

strengthened with one layer of PBO TRM system (𝐸𝐸)𝑃𝑃𝑃1 = 6.4 𝑘𝑁/𝑚𝑚 . Load 

versus mid span deflection curve is shown in Figure 54-a along with the control 

specimen R2. Steel and concrete strain relationship with the applied load are shown in 

Figure 54-b and 54-c respectively. The load in this specimen also dropped down 

suddenly at the displacement of 40.45 mm after reaching its ultimate load value of 

84.68 kN. The gain in the ultimate load was 22.47% of the control specimen R2. The 

yield load recorded was 62.357 kN at a displacement of 8.05 mm. After the first drop 

the load increased suddenly as well and at 77 kN, the cracks were appearing within 

the mortar layer (Figure 55). The final mode of failure was due to flexural failure 

associated with cracking within TRM layer followed by the crushing of concrete 

(F+L+C). 
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c)  

 
Figure 54: Test results for specimen P-R2-V1-F a) load vs displacement; b) load vs steel strain and c) 

load vs concrete strain 
 

 

Figure 55: Mode of failure and crack patterns for test beam P-R2-V1-F (Values are in kN) 
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specimen is shown in Figure 56-a while load versus steel and concrete strains are 

shown in Figure 56- b and 56-c respectively. The first crack appeared at 22 kN 

(Figure 57). The ultimate and yield load recorded were 88.15 kN and 67.91 kN 

respectively. The gain in the ultimate load capacity was 27.51% of the control 

specimen R2. Prior to reach the ultimate load value, the load dropped once due to the 

failure of first textile layer and as a result of the major cracks within the mortar layer 

followed by the concrete crushing (F+L+C). The test was stopped due to the safety as 

the deflection was more than 60 mm.  

a) b)  

c)  

Figure 56: Test results for specimen P-R2-V2-F a) load vs displacement; b) load vs steel strain and c) 

load vs concrete strain 
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Figure 57: Mode of failure and crack patterns for test beam P-R2-V2-F 

4.15 Specimen P-R3-V1-F 

P-R3-V1-F specimen having the main longitudinal reinforcement of D16 was 

strengthened with one layer of PBO TRM system (𝐸𝐸)𝑃𝑃𝑃1 = 6.4 𝑘𝑁/𝑚𝑚.. Load 

versus mid span deflection curve is shown in Figure 58-a along with the control 

specimen R3. Steel and concrete strain relationship with the applied load are shown in 

Figure 58-b and 58-c respectively. The mortar layer started to crack at 81 kN but it 

did not go up to the bond failure between the concrete substrate and TRM layer. The 

final mode of failure (F+L+C) was the flexural failure associated with cracking 

within TRM layer followed by the crushing of concrete as there was no clear sign of 

rupturing of textile (Figure 59). The load dropped twice prior of reaching the final 

load value. The corresponding yield flexural load for beam was 105.7kN. The 

ultimate load (117.6kN) recorded was before the first drop of the load. The increase 

in the load capacity was only 6.60% of the control specimen R3.  
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a) b)  

c)  

Figure 58: Test results for specimen P-R3-V1-F a) load vs displacement; b) load vs steel strain and c) 

load vs concrete strain 

 

Figure 59: Mode of failure and crack patterns for test beam P-R3-V1-F 
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4.16 Specimen P-R3-V2-F 

P-R3-V2-F beam specimen used D16 as the main longitudinal reinforcement and was 

strengthened with PBO TRM system using two layers of PBO textile (𝐸𝐸)𝑃𝑃𝑃2 =

12.8 𝑘𝑁/𝑚𝑚. The load-displacement relationship, along with its associated control 

specimen is shown in Figure 60-a while load versus concrete strain is shown in Figure 

60- b. The steel strain gauges were not working in this beam specimen. The reason 

might be it slips or breaks while the preparation of beam specimens or while applying 

the vibrator during casting of concrete. The first crack appeared at 33 kN in the 

middle of beam specimen (Figure 61).  The cracks in the mortar layer started at 121 

kN. There was no sudden drop in the load value and the final mode of failure was the 

flexural failure associated with cracking within TRM layer followed by the crushing 

of concrete (F+L+C). The yield and the ultimate load recorded were 101.6 kN and 

123.86 kN respectively. The gain in the ultimate load capacity was 12.31% with 

respect to the control specimen R3.  

a) b)  

Figure 60: Test results for specimen P-R3-V2-F a) load vs displacement  

and b) load vs concrete strain 
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Figure 61: Mode of failure and crack patterns for test beam P-R3-V2-F 

4.17 Discussion of test results 

The following discussions are made on the observed ultimate load carrying capacities 

and the deformational characteristics in terms of the deflection at mid span, ductility 

index and energy absorption in both the TRM systems. 

4.17.1 Load deflection and load carrying capacities: 

Columns 3 and 4 in Table 11 list the ultimate load carrying capacity Pu for each 

specimen and gain in Pu (in terms of strengthened beams), respectively. Figure 62 (a 

and b) depicts the load versus mid-span deflection for strengthened beams having 

D10 as main longitudinal reinforcement. Figure 62a is for carbon and Figure 62b is 

for PBO strengthened specimens. From these figures, it is observed that for carbon 

TRM system, the increments/gains in Pu were: C-R1-V1-F with single textile layer - 

38%, C-R1-V2-F with double textile layer - 35%, and C-R1-V3-F with three textile 

layers - 68%. For PBO TRM system, these gains were: P-R1-V1-F with single textile 
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layer - 25%, and P-R1-V2-F with two textile layers - 66%. Both the TRM systems 

showed considerable enhancement in ultimate load compared to the control specimen 

R1. 

.  

a) Specimens strengthened with carbon TRM system 

 

b) Specimens strengthened with PBO TRM system 

Figure 62: Comparison on load versus mid span deflection for specimens having D10 reinforcement. 
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Figure 63 (a and b) shows the load versus mid-span deflection for strengthened beams 

having D12 as main longitudinal reinforcement. It is observed that for carbon TRM 

system, the increments/gains in Pu were: C-R2-V1-F with single textile layer – 

23.13%, C-R2-V2-F with double textile layer – 26.11%, and C-R2-V3-F with three 

textile layers – 77.51%. For PBO TRM system, these gains were: P-R2-V1-F with 

single textile layer – 22.47%, and P-R2-V2-F with two textile layers – 27.51%. Both 

the TRM systems showed considerable increment in ultimate load compared to the 

control specimen R2. 

 

 

a) Specimens strengthened with carbon TRM system 
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b) Specimens strengthened with PBO TRM system 

Figure 63: Comparison on load versus mid span deflection for specimens having D12 reinforcement 

 

Figure 64 (a and b) shows the load versus mid-span deflection for strengthened beams 

having D16 as main longitudinal reinforcement. Figure 64a is for carbon and Figure 

64b is for the PBO strengthened specimens. It is observed that for carbon TRM 

system, the increments/gains in Pu were: C-R3-V1-F with single textile layer – 

14.40%, C-R3-V2-F with double textile layer – 13.54%, and C-R3-V3-F with three 

textile layers – 45.41%. For PBO TRM system, these gains were: P-R3-V1-F with 

single textile layer – 6.60%, and P-R3-V2-F with two textile layers – 12.31%. Both 

the TRM systems showed considerable increment in ultimate load compared to the 

control specimen R3. 
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a) Specimens strengthened with carbon TRM system 

 

a) Specimens strengthened with PBO TRM system 

Figure 64: Comparison on load versus mid span deflection for specimens having D16 reinforcement. 
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The bar chart in Figure 65 (a-c) depicts the ultimate and yield loads (Pu and Py, 

respectively) for corresponding specimens. The yield load value is the load at which 

the steel rebar started to yield. The load value corresponding to the strain value of 

rebar (0.26% strain) where it started to yield was taken as the yield load. Figure 65 

shows that the strengthening technique contributed to increase in both the yield and 

ultimate load carrying capacities of strengthened specimens as compared to control 

specimens. The increase in the ultimate capacity was also strongly affected by the 

number of layers of textiles. 

 

a) Specimens with D10 reinforcement 

 

b) Specimens with D12 reinforcement 
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c) Specimens with D16 reinforcement 

Figure 65: Ultimate and yield loads for all the tested specimens 

4.17.2 Ductility characteristics 

The ductility index (∆𝐼) is defined as the ratio between the deflection at the ultimate 

load and that at yield load [5]. The bar charts in Figure 66 (a-c) and column 8 in 

Table 12 summarize the values of ductility index (∆𝐼) for specimens having a 

different reinforcement ratio. For the D10 reinforcement (𝜌𝑠 = 0.50%)  beam 

specimens, the ductility index increased with the increase in the number of textile 

layers. PBO strengthened specimens were more ductile than that of specimens 

strengthened with the carbon textiles. However, beam specimens with the 

reinforcement D12(𝜌𝑠 = 0.72%), and D16(𝜌𝑠 = 1.27%), the ductility index values 

decreased with the higher number of textile layers. Nevertheless the beam specimens 

strengthened with PBO textiles were more ductile as compared to carbon textile. 
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The average values of ductility indices of using carbon as strengthening material were 

1.1×, 1.2× and 0.5× for D10, D12 and D16 beam specimens respectively to that of 

the control specimen. Similarly the average values of ductility indices of using PBO 

as strengthening material were 2.42× , 0.75×  and 0.56×  for D10, D12 and D16 

specimens respectively to that of the control specimen. 

4.17.3 Energy absorption characteristics 

The energy absorption (Ѱ) is the area under the load deflection curve up to the 

ultimate load [5]. The bar charts in Figure 66 (a-c) and column 9 in Table 12 

summarize the values of the energy absorption (Ѱ) for specimens having a different 

reinforcement ratio. As shown in column 9 of Table 12, the increase in number of 

textile layers increases the energy absorption of all the strengthened specimens to that 

of the control specimens. A noticeable increase in the energy absorption was 

observed when using the carbon TRM system as compared to that when using PBO as 

shown in Figure 66.  

The average values of energy absorption for using carbon as strengthening material 

were 1.8×, 1.2× and 1.6× for D10, D12 and D16 beam specimens respectively to that 

of the control specimen. Similarly the average values of energy absorption for using 

PBO as strengthening material were 2.0×, 1.0× and 1.5× for D10, D12 and D16 

specimens respectively to that of the control specimen.  
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a) Specimens with D10 reinforcement 

 

b) Specimens with D12 reinforcement 
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c) Specimens with D16 reinforcement 

Figure 66: Ductility index and energy absorption values for all the specimens normalized to those of 

control specimens 

4.18 Effect of investigated parameters 

The three different parameters which were to be investigated in this research are steel 

reinforcement ratio, TRM systems and volume fraction. The detailed discussion of 

the effect of these parameters on the strengthened specimens using carbon and the 

PBO TRM system is highlighted below. 

4.18.1 Effect of main steel reinforcement ratio 

Specimens having different steel reinforcement ratios while having the same TRM 

reinforcement ratio are discussed in this section. Their behavior regarding the 
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increase in the ultimate strength and their mode of failure is highlighted for both the 

carbon and PBO TRM systems 

4.18.1.1 Carbon TRM system  

For the specimens (C-R1-V1-F, C-R2-V1-F and C-R3-V1-F) having different steel 

reinforcement ratio, but with textile of same (𝐸𝐸)𝐶1 = 12.56 𝑘𝑁/𝑚𝑚, a decrease in 

the gain in ultimate load value was observed from 37.97 % to 14.40 % respectively 

over their control specimens. Moreover the mode of failure, which was the rupture of 

textile at the mid-span (F+T+C), was similar for all of them. 

Similarly, the specimens (C-R1-V2-F, C-R2-V2-F and C-R3-V2-F) with same textile 

(𝐸𝐸)𝐶2 = 25.12 𝑘𝑁/𝑚𝑚, had a decrease in the gain in Pu from 35.52 % to 13.54 % 

respectively over their control specimens. Moreover the mode of failure as mentioned 

above (F+T+C) was similar for all of them. 

A similar trend was observed in specimens (C-R1-V3-F, C-R2-V3-F and C-R3-V3-F) 

having the same (𝐸𝐸)𝐶3 = 37.68 𝑘𝑁/𝑚𝑚 in which the gain in the ultimate load value 

was decreased from 67.85 % to 45.41%. All of these specimens had the similar mode 

of failure in which the TRM layer separated from concrete substrate (F+S+C). 

4.18.1.2 PBO TRM system 

For specimens (P-R1-V1-F, P-R2-V1-F and P-R3-V1-F) having the different steel 

reinforcement ratios, but with textile of same (𝐸𝐸)𝑃𝑃𝑃1 = 6.4 𝑘𝑁/𝑚𝑚, a decrease in 

the gain in ultimate load value was observed from 24.69 % to 6.60 % respectively 
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over their control specimens. The mode of failure which was cracking within the 

mortar layer (F+L+C) was similar for all of them. 

Similarly for specimens (P-R1-V2-F, P-R2-V2-F and P-R3-V2-F) having the constant 

EA value ((𝐸𝐸)𝑃𝑃𝑃2 = 12.8 𝑘𝑁/𝑚𝑚) while the 𝜌𝑠  value changed from 0.57% to 

1.27%, the gain in the ultimate load decreased from 66.49% to 12.31% though having 

the similar mode of failure as mentioned above (F+L+C). 

It can be concluded that for the specimens strengthened either with carbon TRM 

system or PBO TRM system, as the steel reinforcement ratio was increased by 

keeping the TRM volumetric fraction constant, there was decrease in gain in the 

ultimate load value. The mode of failure was however similar for all the beams. 

4.18.2 Effect of TRM system 

Here discussion on two different TRM systems for strengthening the beam specimens 

is done comparing the efficiency of each system in enhancing the ductility and 

capacity of the strengthened beams. 

4.18.2.1 Specimens with D10 reinforcement (𝜌𝑠 = 0.50%) 

For the specimens with (𝜌𝑠 = 0.50%) strengthened with carbon and the PBO TRM 

system, the average increase in the load capacity of the strengthened beams were 

47.11% and 45.59 % respectively over the control specimen R1. Moreover the 

average values of ductility index were 1.1 ×  and 2.42 ×  to that of the control 

specimens for carbon and PBO TRM system respectively. Also the energy absorption 
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increased from 998.7 kN-m to 1,485 kN-m for carbon TRM system and from 1,665.1 

kN-m to 2,323.2 kN-m for the PBO TRM system. 

4.18.2.2 Specimens with D12 reinforcement (𝜌𝑠 = 0.72%) 

For the specimens having 𝜌𝑠  = 0.72% and strengthened with carbon and the PBO 

TRM system, the average increase in the capacity of the strengthened beams were 

42.25% and 25% respectively over the control specimen R2. Moreover the average 

values of ductility index was 0.40× and 0.75× to that of the control specimen for 

carbon and PBO TRM system respectively. For carbon TRM system the energy 

absorption value increased from 1,210.7 kN-m to 1,623.8 kN-m and for PBO TRM 

system, the energy absorption value increased from 2,804.2 kN to 2,980.1 kN-m as 

the volume fraction increased. 

4.18.2.3 Specimens with D16 reinforcement (𝜌𝑠 = 1.27%) 

Similar patterns of specimens having the 𝜌𝑠  = 0.72% had been observed for 

specimens having 𝜌𝑠 = 1.27% PBO strengthened specimens were more ductile and 

were having more average ductility index value of  0.56× to that of the control 

specimen compared to specimens that were strengthened with carbon TRM system 

which had the average ductility index value of 0.47× to that of control specimen. This 

decrease in ductility for strengthened beams with higher percentage of steel 

reinforcement 𝜌𝑠  = 1.27% is understandable. Nevertheless, there was a gain in the 

energy absorption value for both strengthened beams, from 1,959.3 kN-m to 2,719.5 

kN-m for carbon TRM system and from 2,266.5 kN-m to 2,943.2 kN-m for PBO 
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TRM systems respectively. Moreover the average increase in the ultimate capacity of 

strengthened specimens for carbon and the PBO TRM system were 24.5 % and 9.5 % 

respectively over the control specimen R3.  

It can be concluded that for specimens of all three different reinforcement ratios, the 

ones strengthened with the PBO TRM system were more efficient in terms of 

ductility but less effective in enhancing the capacity of strengthened beams compared 

to the carbon TRM system. This was reflected in terms of the mode of failure 

(F+S+C) which showed the separation of TRM layer from concrete substrate for 

beam strengthened with carbon TRM system. But, in PBO TRM systems, there were 

cracks within the mortar layer (F+L+C) which showed the strong bond between TRM 

layer and concrete substrate and were hence more ductile. The higher value of 

ultimate load carrying capacity for the carbon TRM system corresponds to higher 

energy absorption value for beams strengthened with carbon TRM system as 

compared to the ones with PBO TRM. 

4.18.3 Effect of volume fraction of textile 

By keeping the steel reinforcement ratio (𝜌𝑠 ) value constant, different volume 

fractions of textile were achieved by altering the number of layers of textiles that 

were embedded in the mortar. The behavior in terms of the increase in the load 

carrying capacity of strengthened beams, failure patterns observed, ductility and 

energy absorption among the two different TRM systems with different number of 

layers of textiles are discussed in this section. 
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4.18.3.1 Specimens with D10 reinforcement (𝜌𝑠 = 0.50%) 

As the number of layers of textiles increased from 1 to 3 in the carbon TRM system 

(EA values changes from 12.56 kN/mm to 37.68 kNmm), the gain in the ultimate 

load carrying capacity increased from 37.97 % to 67.85 % respectively to that of the 

control specimen R1. Also, there was an increase in the ductility index and energy 

absorption by increasing the volume fraction. 

In PBO TRM system, as the number of layer of textiles increased from 1 to 2, (EA 

value increases from 6.4 kN/mm to 12.8 kN/mm) the ultimate load carrying capacity 

increased from 24.69 % to 66.49 %. Moreover, the ductility index and energy 

absorption values increased as well and are comparatively higher than the carbon 

TRM system. It can also be seen that specimens strengthened with two layers of PBO 

TRM system ((𝐸𝐸)𝑃𝑃𝑃2 = 12.8 𝑘𝑁/𝑚𝑚) gave approximately the same increase in 

the ultimate load carrying capacity of 66.49 % compared with three layers of carbon 

((𝐸𝐸)𝐶3 = 37.68 𝑘𝑁/𝑚𝑚) TRM system of 67.85 %. 

4.18.3.2 Specimens with D12 reinforcement (𝜌𝑠 = 0.72%) 

Here for the carbon TRM system, as the EA value for textile increased from (𝐸𝐸)𝐶1 =

12.56 𝑘𝑁/𝑚𝑚 to (𝐸𝐸)𝐶3 = 37.68 𝑘𝑁/𝑚𝑚, the ultimate load carrying capacity was 

increased from 23.13% to 77.51% to that of the control specimen R2. Energy 

absorption value also increases by increasing the number of layers of textile, however 

there was subsequent decrease in the ductility index.  
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For the PBO TRM system, as the EA value increased from from (𝐸𝐸)𝑃𝑃𝑃1 =

6.4 𝑘𝑁/𝑚𝑚 to (𝐸𝐸)𝑃𝑃𝑃2 = 12.8 𝑘𝑁/𝑚𝑚, the increase in the ultimate load carrying 

capacity was 22.47 % and 27.51 % respectively. The energy absorption value 

increased but relatively lowers than that of the carbon TRM system. The ductility 

index value decreased with the increase in textile volumetric fraction, however the 

energy absorption value increased, but relatively lower than that of the carbon TRM 

system. 

4.18.3.3 Specimens with D16 reinforcement (𝜌𝑠 = 1.27%) 

A similar trend to specimens (𝜌𝑠 = 0.72%) was observed for specimens having 

(𝜌𝑠 = 1.27%) in which as the number of layers of textiles in the carbon TRM system 

increased from 1 to 3 layers, the ultimate load carrying capacity also increased from 

14.40% to 45.41% to that of the control specimen R3. But for the PBO TRM system 

as the number of layers of textile increased from 1 to 2 there was no any remarkable 

increase in the ultimate load carrying capacity (gain in Pu was from 6.60% to 12.31% 

only). Moreover, similar trend of ductility index (reduction) and energy absorption 

(gain) were observed. 

From the above observations, for lower reinforcement ratio (𝜌𝑠 = 0.50%), as the 

textile volumetric fraction increased, the specimens strengthened with PBO TRM 

system were more efficient in terms of ductility as well as in increasing the ultimate 

load carrying capacity than that of carbon TRM system. For larger reinforcement 

ratios (𝜌𝑠 = 0.72% 𝑎𝑎𝑑 𝜌𝑠 = 1.27%), the carbon TRM system was more efficient in 
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the ultimate load carrying capacity than that of PBO TRM system which was also the 

indication of higher energy absorption values in specimens strengthened with carbon 

TRM system. Moreover as the textile volumetric fraction increased with the increase 

in the reinforcement ratio, there was not any change in the failure pattern of 

specimens strengthened with PBO TRM system. On the other hand for all the 

reinforcement ratios of specimens strengthened by carbon TRM system, the increase 

in volume fraction tends to change the failure pattern. For lower volume fraction 

(𝜌𝑓 = 0.014% 𝑎𝑎𝑑 0.028%), the failure pattern was (F+T+C) in which the textile at 

the mid span ruptured from the mortar layers and for higher volume fraction (𝜌𝑓 =

0.041%)  it changed to (F+S+C) which means the separation of whole TRM layer 

with concrete substrate. 
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CHAPTER 5 
THEORETICAL LOAD CALCULATIONS  

 

5.1 Theoretical loads 
The theoretical values of the load have been calculated in order to verify the 

experimentally observed flexural load value. Theoretical formulations for the 

analytical predictions of the flexural strength of the tested beams were done based on 

ACI 549.4R-13 [10]. Analogies will be made to state the applicability of the ACI 

formulations for predicting behavior of TRM system. 

For theoretical computations, several assumptions were made to calculate the flexural 

resistanceof RC beam sections reinforced with TRM layer. These assumptions are: 

1. Plane cross section remains plane before and after loading.  

2. Whitney stress block is used to calculate compressive stress in concrete.  

3. The maximum compressive strain in concrete is assumed to be 0.003. Tensile 

strength of concrete is neglected.  

4. Steel is assumed to be elastic before yielding, and it maintains constant 

yielding stress (550 MPa) post yielding.  

5. TRM / FRCM has a bilinear-elastic behavior up to failure. However, the 

contribution of TRM before cracking is neglected [33]. 

6. The interface between the reinforcing mortar and the textile is considered 

stronger than the concrete substrate and TRM interface.  
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7. The perfect bond between TRM layer and concrete substrate as well as the 

good bond between fabric and the matrix. 

Of all the assumptions, the one with the perfect bond seems to be more arguable. 

However as the TRM tensile properties are characterized in ACI 549, the fabric slip 

within the matrix is built in the constitutive law of material [10]. Similarly, at failure 

the TRM separation / debonding from the concrete substrate occurs without affecting 

the flexural performance of the member. 

The following sections present step-by-step formulations adopted for calculating the 

flexural resistance of typical doubly-reinforced concrete beam with TRM 

strengthening. Sample calculations for two of the beams have been done accordingly 

and are given in Appendix A. The typical bending moment and shear force diagram 

for the tested beam is shown in Figure 67 for reference. 

The theoretical computations and experimentally observed values are compared in 

Table13. 
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Figure 67: Bending moment and shear force diagram for the tested beam    
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Table 13: Theoretical load computation results for all tested beams. 

No. Beam “c” 
mm 

Nominal 
Moment 

(Mn)  
kN-m 

Theoretical 
Ultimate 
Load (PT) 

kN 

Test 
Ultimate 

Load 
(𝑷𝑼) kN 

𝑷𝑼
𝑷𝑻

 

1 R1 30.16 17.305 46.87 47.90 1.02 

2 R2 37.5 24.094 58.41 69.14 1.18 

3 R3 60.6 40.434 98.02 110.32 1.12 

4 C-R1-V1-F 16.96 26.10 63.28 66.084 1.04 

5 C-R1-V2-F 19.72 31.34 74.99 72.94 0.99 

6 C-R1-V3-F 22.47 36.10 87.52 80.40 0.92 

7 C-R2-V1-F 21.35 32.28 78.26 85.15 1.09 

8 C-R2-V2-F 24.10 37.21 90.27 89.12 0.99 

9 C-R2-V3-F 26.84 42.10 102.06 122.71 1.20 

10 C-R3-V1-F 32.34 47.22 114.48 126.17 1.10 

11 C-R3-V2-F 35.19 52.10 126.29 142.29 1.12 

12 C-R3-V3-F 37.89 57.15 138.44 160.36 1.15 

13 P-R1-V1-F 15.60 23.62 57.25 59.72 1.04 

14 P-R1-V2-F 17.01 26.21 63.51 79.74 1.25 

15 P-R2-V1-F 20 29.84 72.34 84.68 1.17 

16 P-R2-V2-F 21.40 32.37 78.50 88.15 1.13 

17 P-R3-V1-F 31.14 45.05 109.24 117.6 1.07 

18 P-R3-V2-F 32.52 47.47 115.10 123.86 1.08 
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5.1.2 Moment capacity of beam specimens with TRM layers 

Following ACI 549 (Reference), TRM ultimate tensile strain 𝜀𝑓𝑐, is the average 

minus one standard deviation derived from the tensile test conducted according to 

AC434. So, based on this the effective tensile strain level in TRM at failure, 𝜀𝑓𝑓, is 

limited to the ultimate tensile strain, 𝜀𝑓𝑐, defined in Eq. (1). The internal stress and 

strain distribution of doubly reinforced concrete beam with the TRM strengthening is 

shown in Figure 68. 

 

Figure 68: Internal stress and strain distribution for a doubly-reinforced rectangular beam section 

strengthened with TRM under flexure at ultimate limit state 

𝜀𝑓𝑓 =  𝜀𝑓𝑐  ≤ 0.012           (1) 

The effective tensile stress level in the TRM reinforcement achieved at failure, 𝑓𝑓𝑓, 

can be computed from Eq. (2) 
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𝑓𝑓𝑓 = 𝐸𝑓  × 𝜀𝑓𝑓           (2) 

The flexural strength is calculated in accordance with Eq. (3) 

𝑀𝑛 = 𝑀𝑛𝑠1 + 𝑀𝑛𝑠2 + 𝑀𝑓         (3) 

Where 𝑀𝑛  = nominal flexural strength; and 𝑀𝑛𝑠1 , 𝑀𝑛𝑠2 and 𝑀𝑓 is equal to the 

contribution of tension steel reinforcement, compression steel reinforcement and 

TRM respectively. They are expressed according to Eq. (4), (5) and (6) respectively 

𝑀𝑛𝑠1 =  𝐸𝑠𝑓𝑦 �𝑑 −
𝛽𝑐
2
�         (4) 

𝑀𝑛𝑠2 =  𝐸𝑠′𝑓𝑠′(𝑑 − 𝑑′)         (5) 

𝑀𝑓 =  𝐸𝑓𝑏𝑓𝑓𝑓 �ℎ −
𝛽𝑐
2
�         (6) 

With assumed neutral axis depth, the strain and stress level in the TRM layer and 

steel reinforcement can be calculated with the hit and trial method using the internal 

force equilibrium Eq. (9) 

Referring to Figure 68 

𝑇1 + 𝑇𝑓 = 𝐶1+𝐶2          (7) 

𝐸𝐴 𝑓𝑓 + 𝐸𝑓𝑏𝑓𝑓𝑓 = (0.85 × 𝑓𝑓′)𝛽𝑓𝑏 + 𝑓𝐴′𝐸𝑠′      (8) 

Where 𝑎 = 𝛽𝑓  and  𝛽 = 0.85       

𝑓 =
𝐴𝑠𝑓𝑦+𝐸𝑓𝑏 𝑓𝑓𝑓−𝐴𝑠′𝑓𝑠

′

0.85 𝑓𝑓
′  𝛽𝑏

                  (9) 
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The effective stresses on compression and tension steel rebars can be computed as  

𝑓𝑠 = 𝐸𝑠 × 𝜀𝑠𝑦 and 𝑓𝑠′ = 𝐸𝑠 × 𝜀𝑠𝑦′        (10) 

Using the strain compatibility, the effective tensile strain level in TRM (𝜀𝑓𝑓), tension 

steel yield strain (𝜀𝑠𝑦), compression steel yield strain (𝜀𝑠𝑦′) and the compressive strain 

in the concrete (𝜀𝑐), are related in accordance with Eq. (11). 

𝜀𝑓𝑓  
ℎ−𝑐

= 𝜀𝑠𝑦  
𝑑−𝑐

= 𝜀𝑠𝑦′  
𝑐−𝑑′

= 𝜀𝑐  
𝑐

         (11) 

As the maximum value of moment is know from Figure 67, 

𝑀𝑚𝑚𝑚 = 𝑃
2

× 𝑙1         (12) 

The value of P can be obtained by the following relation 

𝑃 =  𝑀𝑛×2
𝑙1

          (13) 

Based on the theoretical load calculations as described above, computational results 

comparable to the experimental values were achieved. Average variation of 

theoretically computed load to the experimentally observed values was 3% which 

shows relatively satisfactory computational results. It should be noted that the scope 

of theoretical computation adopted in this work is relatively simple and is based on 

formulations based on ACI 549 [10]. Future work will be concentrated on more 

detailed finite element.  
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CHAPTER 6  
CONCLUSION AND RECOMMENDATIONS 
 

The experimental as well as analytical work for using textile reinforced mortar to 

increase the flexural capacity of reinforced concrete beams was performed in this 

study. Two different types of TRM systems, namely carbon TRM system and PBO 

TRM system were used as a strengthening material. The effect of three different 

parameters; steel reinforcement ratio, different TRM systems and volume fraction 

(EA) of textiles have been studied in order to know the behavior of each TRM system 

and to make comparisons between the two systems. Eighteen (18) beam specimens 

were tested under four point bending until failure. After successful completion of 

experimental work, an increase in the capacity of all tested strengthened specimens 

was achieved. The major conclusion derived from this research is discussed for each 

parameter respectively. 

6.1 Effect of reinforcement ratio 

For the specimens strengthened either with the carbon TRM system or by a PBO 

TRM system, it was observed that as the steel reinforcement ratio increased by 

keeping the (EA) value of TRM constant, the gain in the ultimate load value 

decreased. Also the change in the reinforcement ratio did not affect the mode of 

failure. Higher the reinforcement ratio, while having the same (EA) value gave the 

same mode of failure. Similarly for lower reinforcement ratio specimens having same 

textile (EA) also gave the same mode of failure.  
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.For both types of TRM systems, increased in reinforcement ratio resulted in a 

reduced ductility index, which is commonly observed for RC beams with higher 

reinforcement content. However, energy absorption increased for all the specimens 

with subsequent increase in reinforcement ratio. 

6.2 Effect of TRM system 

Specimens for all three different reinforcement ratios, the ones strengthened with the 

PBO TRM system was more efficient in terms of ductility but less effective in 

enhancing the capacity of strengthened beams as compared to the carbon TRM 

system. This also had been reflected in terms of the mode of failure (F+S+C) for 

carbon TRM system which showed the separation of TRM layer from concrete 

substrate but in PBO TRM systems, there were cracks within the mortar layer 

(F+L+C) which shows the strong bond between TRM layer and concrete substrate 

and were hence more ductile. However, due to the higher ultimate load carrying 

capacity of carbon TRM system, the energy absorption value was also relatively 

higher as compared to the PBO TRM system.  

6.3 Effect of volume fraction of textile 

For lower reinforcement ratio (𝜌𝑠 = 0.50%) , as the (EA) value increased, the 

specimens strengthened with the PBO TRM system was more effective in terms of 

ductility as well as enhancing the ultimate load carrying capacity than that of the 

carbon TRM system. For larger reinforcement ratios (𝜌𝑠 = 0.72% 𝑎𝑎𝑑 𝜌𝑠 = 1.27%), 

the carbon TRM system was more effective in the ultimate load carrying capacity 
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than that of a PBO TRM system which was also the indication of higher energy 

absorption values in specimens strengthened with carbon TRM system. 

However, as the (EA) value of TRM increased with the increase in the reinforcement 

ratio, there was no change in the failure pattern of specimens strengthened with the 

PBO TRM system. On the other hand, for all the reinforcement ratios of specimens 

strengthened by a carbon TRM system, the increased in (EA) also resulted in change 

in the failure pattern. For lower EA values of TRM; (𝐸𝐸)𝐶1 = 12.56 𝑘𝑁/𝑚𝑚 and 

(𝐸𝐸)𝐶2 = 25.12 𝑘𝑁/𝑚𝑚, the failure pattern was (F+T+C) in which the textile at the 

mid span was close to rupture (close to the tensile strength) and for a higher values 

(𝐸𝐸)𝐶3 = 37.68 𝑘𝑁/𝑚𝑚,  it changed to (F+S+C), the separation of whole TRM layer 

with concrete substrate, with relatively low stressed textiles. 

6.4 Final conclusion and future work 

It can be concluded that a reasonable gain in the flexural strength was achieved for 

both the TRM systems, with an average increase of 38% for the carbon TRM system 

and an average of 26.7% for the PBO TRM system compared to that of their 

respective control specimen. So, both the systems performed considerably well and 

objective of gaining in an increase in flexural strength (by using different volume 

fractions and different steel reinforcement ratio) with TRM has been achieved 

successfully with this work. 

Further, PBO system showed comparatively stronger interfacial bond behavior within 

the TRM system as well as between the TRM layer and concrete substrate, which 
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resulted in higher ductility index and high energy absorption. It should be noted that 

for lightly reinforced beam specimen (R1 types), PBO TRM reinforced specimens 

performed well both in strength gain as well as in ductility index. For higher 

reinforcement ratios (R2 and R3 types), carbon TRM system was better in enhancing 

the flexural capacity, but during experimentation, as the load increased, there were 

cracks along the TRM surface and ultimately resulted in the separation from the 

concrete substrate which was the final mode of failure. This showed that the carbon 

TRM system had a weaker bond among the TRM systems and was less ductile. 

Therefore, both the adopted TRM systems performed exceptionally well within the 

scope of the work, with carbon TRM system showing a relatively higher increase in 

the capacity of strengthened specimens and PBO TRM systems exhibiting relatively 

more ductile failure with higher bond strength between the TRM surface and concrete 

substrate.  

Moreover, during the experimentation, it was seen that the technique of applying the 

TRM system also considers the contractor’s ease where the construction workers 

(although not very skilled) can easily adopt the technique after being given simple 

demonstrations. 

The reported work is limited to apply the TRM strengthening technique on newly 

constructed beams. The potential future work will concentrate on the study of TRM 

effectiveness for the corrosion damaged specimens which will highlight the behavior 

of TRM-strengthened structures with a focus on the corrosion aspect and its effect on 
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the structure’s performance. Further, more detailed finite element modeling of TRM 

strengthened beams will be performed in near future. 
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APPENDIX A 
 

Detailed theoretical calculations for two of the beam specimen based on Chapter 5 are 

given in this section. The sample calculations are presented for two characteristic 

beam specimens: i) the strengthened specimen with three layers of carbon textile (C-

R2-V3-F), and ii) the strengthened specimen with two layers of PBO textile (P-R2-

V2-F). Also, the sample calculation for specimen showing the shear capacity of 

strengthened specimen is not exceeding the flexural one are also presented.  

A.1 Sample calculation for R2 with three layers of carbon textile  

(C-R2-V3- F) 

Beam Properties 

Clear Length of beam    𝐿𝑏= = 2200 mm 

Width of beam      𝑊𝑏= 150 mm 

Effective depth of steel reinforcement  𝑑= 210 mm 

Thickness of the beam    ℎ= 260 mm 

Effective depth of compression steel  𝑑′ = 36 mm 

Nominal compressive strength    𝑓𝑐′= 67 MPa 

Area of steel bar      𝐸𝑠= 226.2 mm2 

Area of compression steel bar    𝐸𝑠′= 100.53mm2 

Yield Strength      𝑓𝑦 = 550 MPa 
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Steel Modulus of elasticity    𝐸𝑠 = 200 GPa 

Concrete Modulus of Elasticity    𝐸𝑐 = 38.47 GPa 

TRM Properties 

Area of fabric per unit width    𝐸𝑓= 0.157 mm2 / mm 

Ultimate tensile strain     𝜀𝑓𝑐= 0.012 

Tensile Modulus of elasticity    𝐸𝑓= 80 GPa 

Ultimate tensile strength     𝑓𝑓𝑐= 1031 MPa 

Number of layers of fabric    N = 3 

 

Calculation 

Referring to section 5.1.2, the TRM delamination is assumed as the final mode of 

failure at the maximum strain of TRM while the compressive strain in the concrete 

does not exceed𝜀𝑐′. 

After hit and trial method, internal force equilibrium should be satisfied according to 

Eq. (7) by taking c = 27.67 mm from equation (9) 
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𝑓 = 𝐴𝑠𝑓𝑦+𝐴𝑓𝑏 𝑓𝑓𝑓−𝐴𝑠′𝑓𝑠′

0.85 𝑓𝑐′ 𝛽𝑏
 = 27.67 mm 

The strain levels in concrete, tension steel and compression steel are computed as  

𝜀𝑐 = 𝑓
ℎ−𝑓 𝜀𝑓𝑓= 0.0014 mm / mm 

𝜀𝑠 = 𝑑−𝑓
ℎ−𝑓 𝜀𝑓𝑓= 0.0094 mm / mm 

𝜀𝑠′ = 𝑓−𝑑′
𝑓 𝜀𝑐= -0.00043 ≅ 0 mm / mm 

𝜀𝑐 = 1.7 𝑓𝑐′
𝐸𝑐

 = 0.00296 mm / mm  

Internal force equilibrium equation  

𝑇1 + 𝑇𝑓 = 𝐶1+𝐶2   

𝑇1 =  𝐸𝑠𝑓𝑦= 124.41 kN 

𝑇𝑓 =  𝑁𝐸𝑓𝑏𝐸𝑓𝜀𝑓= 67.82 kN 

𝐶1 =  0.85𝑓𝑐′𝛽𝑓𝑏 = 200.91kN 

𝐶2 =  𝐸𝑠′𝜀𝑠′𝐸𝑠= 0 kN 

The flexural strength is calculated in accordance with Eq. (3) 

𝑀𝑛 = 𝑀𝑛𝑠1 + 𝑀𝑛𝑠2 + 𝑀𝑓         

𝑀𝑛𝑠1 =  𝐸𝑠𝑓𝑦 �𝑑 −
𝛽𝑐
2
� = 26.37 kN-m       
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𝑀𝑛𝑠2 =  𝐸𝑠′𝑓𝑠′(𝑑 − 𝑑′) = 0 kN-m        

𝑀𝑓 =  𝐸𝑓𝑏𝑓𝑓𝑓 �ℎ −
𝛽𝑐
2
� = 16.83 kN-m 

So, the total Nominal moment is equal to  

𝑀𝑛 = 43.24 kN-m 

As the maximum moment is  

 𝑀𝑚𝑎𝑀 = 𝑃
2

 ×  0.825     

43.24 = 𝑃
2

 ×  0.825   

𝑷𝑷𝑷𝑷 = 𝟏𝟏𝟏.𝟕𝟕 𝒌𝒌 
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A.2 Sample calculation for R2 with two layers of PBO textile  

(P-R2-V2- F) 

Beam Properties 

Clear Length of beam    𝐿𝑏= = 2200 mm 

Width of beam      𝑊𝑏= 150 mm 

Effective depth of steel reinforcement  𝑑= 210 mm 

Thickness of the beam    ℎ= 260 mm 

Effective depth of compression steel  𝑑′ = 36 m 

Nominal compressive strength    𝑓𝑐′= 67 MPa 

Area of steel bar      𝐸𝑠= 226.2 mm2 

Area of compression steel bar    𝐸𝑠′= 100.53mm2 

Yield Strength      𝑓𝑦 = 550 MPa 

Steel Modulus of elasticity    𝐸𝑠 = 200 GPa 

Concrete Modulus of Elasticity    𝐸𝑐 = 38.47 GPa 

TRM Properties 

Area of fabric per unit width    𝐸𝑓= 0.05 mm2 / mm 

Ultimate tensile strain     𝜀𝑓𝑐= 0.016 

Tensile Modulus of elasticity    𝐸𝑓= 128 GPa 

Ultimate tensile strength     𝑓𝑓𝑐= 1664 MPa 
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Number of layers of fabric    N = 2 

 

Calculation 

Referring to section 5.1.2, the TRM delamination is assumed as the final mode of 

failure at the maximum strain of TRM while the compressive strain in the concrete 

does not exceed𝜀𝑐′. 

After hit and trial method, internal force equilibrium should be satisfied according to 

Eq. (7) by taking c = 22.23 mm from equation (9) 

𝑓 = 𝐴𝑠𝑓𝑦+𝐴𝑓𝑏 𝑓𝑓𝑓−𝐴𝑠′𝑓𝑠′

0.85 𝑓𝑐′ 𝛽𝑏
 = 22.23 mm 

The strain levels in concrete, tension steel and compression steel are computed as  

𝜀𝑐 = 𝑓
ℎ−𝑓 𝜀𝑓𝑓= 0.0011 mm / mm 

𝜀𝑠 = 𝑑−𝑓
ℎ−𝑓 𝜀𝑓𝑓= 0.0095 mm / mm 

𝜀𝑠′ = 𝑓−𝑑′
𝑓 𝜀𝑐= -0.0069 ≅ 0 mm / mm 
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𝜀𝑐 = 1.7 𝑓𝑐′
𝐸𝑐

 = 0.00296 mm / mm  

Internal force equilibrium equation  

𝑇1 + 𝑇𝑓 = 𝐶1+𝐶2   

𝑇1 =  𝐸𝑠𝑓𝑦= 138.3 kN 

𝑇𝑓 =  𝑁𝐸𝑓𝑏𝐸𝑓𝜀𝑓= 23.04 kN 

𝐶1 =  0.85𝑓𝑐′𝛽𝑓𝑏 = 161.41 kN 

𝐶2 =  𝐸𝑠′𝜀𝑠′𝐸𝑠= 0 kN 

The flexural strength is calculated in accordance with Eq. (3) 

𝑀𝑛 = 𝑀𝑛𝑠1 + 𝑀𝑛𝑠2 + 𝑀𝑓         

𝑀𝑛𝑠1 =  𝐸𝑠𝑓𝑦 �𝑑 −
𝛽𝑐
2
� = 27.75 kN-m       

𝑀𝑛𝑠2 =  𝐸𝑠′𝑓𝑠′(𝑑 − 𝑑′) = 0 kN-m        

𝑀𝑓 =  𝐸𝑓𝑏𝑓𝑓𝑓 �ℎ −
𝛽𝑐
2
� = 57.72 kN-m 

So, the total Nominal moment is equal to  

𝑀𝑛 = 33.52 kN-m 
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As the maximum moment is 

  𝑀𝑚𝑚𝑚 = 𝑃
2

 ×  0.825     

33.52 = 𝑃
2

 ×  0.825   

𝑷𝑷𝑷𝑷 = 𝟖𝟏.𝟐𝟕 𝒌𝒌  
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APPENDIX B 
 

B.1Check for the shear capacity not exceeding the flexural strength [10] 

The TRM composite material bonded to the surfaces of an RC member can be used to 

enhance the design shear strength by acting as external shear reinforcement. The 

sample calculation for two of the specimens C-R3-V2-F and C-R3-V3-F were done 

here to show that the shear capacity exceeds the flexural capacity. 

The design tensile strain in TRM shear reinforcement, 𝜀𝑓𝑓, is calculated by  

Eq. (B.1a) [10]. 

𝜀𝑓𝑓 = 𝜀𝑓𝑐 ≤ 0.004         (B.1a) 

So, the design tensile strength of the TRM shear reinforcement is calculated based on 

the Eq. (B.1b) 

𝑓𝑓𝑓 = 𝐸𝑓𝜀𝑓𝑓          (B.1b) 

Where  𝐸𝑓 is the tensile modulus of elasticity of the cracked TRM composite material 

The shear strength can be computed by using Eq. (B.1c) 

𝑉𝑛 = 𝑉𝑐 + 𝑉𝑠 + 𝑉𝑓         (B.1c) 

Where 𝑉𝑛 is the nominal shear strength and 𝑉𝑐, 𝑉𝑠 and 𝑉𝑓 are the contribution of steel 

reinforcement , concrete and TRM composite material to the nominal shear strength 
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respectively and their corresponding relations are computed in Eq. (B.1d), (B.1e) and 

(B.1f) respectively 

𝑉𝑠 = 𝐴𝑣𝑓𝑦𝑑
𝑠

           (B.1d) 

𝑉𝑐 = 1
6
�𝑓𝑐′(𝑏𝑤𝑑)         (B.1e) 

𝑉𝑓 = n𝐸𝑓𝑓𝑓𝑓𝑑𝑓         (B.1f) 

B.2 Sample calculation of computing shear strength for C-R3-V2-F 

Beam Properties 

Clear Length of beam    𝐿𝑏= = 2200 mm 

Width of beam      𝑊𝑏= 150 mm 

Effective depth of steel reinforcement  𝑑= 210 mm 

Nominal compressive strength    𝑓𝑐′= 67 MPa 

Area of steel bar (stirrups)    𝐸𝑓= 100.4 mm2 

Yield Strength      𝑓𝑦 = 550 MPa 

Spacing of stirrups     𝐴 = 100 mm 

Steel Modulus of elasticity    𝐸𝑠 = 200 GPa 

Concrete Modulus of Elasticity    𝐸𝑐 = 38.47 GPa 
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TRM Properties 

Area of fabric per unit width    𝐸𝑓= 0.157 mm2 / mm 

Ultimate tensile strain     𝜀𝑓𝑐= 0.016 

Design Tensile strain      𝜀𝑓𝑓= 0.0004  

Tensile Modulus of elasticity    𝐸𝑓= 80 GPa 

Ultimate tensile strength     𝑓𝑓𝑐= 1664 MPa 

Number of layers of fabric    N = 2 

Calculation: 

According to the Eq. (B.1c) 

𝑉𝑛 = 𝑉𝑐 + 𝑉𝑠 + 𝑉𝑓 

𝑉𝑠 = 𝐴𝑣𝑓𝑦𝑑
𝑠

    = 115.9 kN 

𝑉𝑐 = 1
6
�𝑓𝑐′(𝑏𝑤𝑑)  =  42.97 kN 

𝑉𝑓 = n𝐸𝑓𝑓𝑓𝑓𝑑𝑓  =  2.67 kN 

So, by summing all three of them  

𝑉𝑛 = 161.54 kN ≥ 142.25 kN (Flexural Failure occurs) 
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B.3 Sample calculation of computing shear strength for C-R3-V3-F 

Beam Properties 

Clear Length of beam    𝐿𝑏= = 2200 mm 

Width of beam      𝑊𝑏= 150 mm 

Effective depth of steel reinforcement  𝑑= 210 mm 

Nominal compressive strength    𝑓𝑐′= 67 MPa 

Area of steel bar (stirrups)    𝐸𝑓= 100.4 mm2 

Yield Strength      𝑓𝑦 = 550 MPa 

Spacing of stirrups     𝐴 = 100 mm 

Steel Modulus of elasticity    𝐸𝑠 = 200 GPa 

Concrete Modulus of Elasticity    𝐸𝑐 = 38.47 GPa 

 

TRM Properties 

Area of fabric per unit width    𝐸𝑓= 0.157 mm2 / mm 

Ultimate tensile strain     𝜀𝑓𝑐= 0.016 

Design Tensile strain      𝜀𝑓𝑓= 0.0004  

Tensile Modulus of elasticity    𝐸𝑓= 80 GPa 

Ultimate tensile strength     𝑓𝑓𝑐= 1664 MPa 

Number of layers of fabric    N = 3 
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Calculation: 

According to the Eq. (B.1c) 

𝑉𝑛 = 𝑉𝑐 + 𝑉𝑠 + 𝑉𝑓 

𝑉𝑠 = 𝐴𝑣𝑓𝑦𝑑
𝑠

    = 115.9 kN 

𝑉𝑐 = 1
6
�𝑓𝑐′(𝑏𝑤𝑑)  =  42.97 kN 

𝑉𝑓 = n𝐸𝑓𝑓𝑓𝑓𝑑𝑓  =  3.99 kN 

So, by summing all three of them  

𝑉𝑛 = 162.86 kN ≥ 160.36 kN (Flexural Failure occurs) 
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APPENDIX C 

C.1 Sample Calculation to find the Ductility Index (∆𝑰) and Energy Absorption (Ѱ) 

This section will briefly show the sample calculation to find the Ductility Index as well as 

Energy Absorption values. Appendix C (Table 14) shows the ductility index and energy 

absorption values for all of the beam specimens used in the experimentation. 

C.2 Ductility Index (∆𝑰) value for C-R2-V1-F and P-R2-V1-F 

The ductility Index (∆𝑰) is defined as the ratio between the deflection at the ultimate 

load(𝜹𝒖) and that at the yield load(𝜹𝒚).  

While doing the experimentation, the data was measured using the data acquisition 

system which have been discussed in section 3.7 as well. Two strain gauges were 

installed on the steel rebar in order to measure the average strain values in the steel 

rebar. Also, the displacement measurements at the mid span of the specimens were 

measured using the displacement transducers. The ultimate load value of each specimen 

was computed directly from the load vs displacement relationship and the displacement 

corresponding to the ultimate load value was taken as the ultimate load 

displacement(𝜹𝒖).  

The yield load value is the load at which the steel rebar started to yield. As strain values 

in the rebar had been recorded by the data acquisition system, the load value 

corresponding to the strain value of rebar (0.26% strain) where it started to yield (as 
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illustrated in Table 6) was taken as the yield load and the corresponding displacement 

measured from displacement transducer was taken as the displacement at yield load(𝜹𝒚). 

C.2.1 Sample calculation for specimen C-R2-V1-F 

Ultimate load value recorded      𝑃𝑃 = 85.15 kN 

Displacement at the ultimate load value    (𝜹𝒖) = 19.33 mm 

Load value corresponding to 2600𝜇 strain in rebar  𝑃𝑓 = 66.18 kN (Yield Load) 

Displacement at the yield load value     (𝜹𝒚) = 8.02 mm 

Ductility Index (∆𝑰) = 
(𝜹𝒖)
(𝜹𝒚)

 = 𝟏𝟏.𝟑𝟑
𝟖.𝟏𝟐

 = 2.41 

C.2.2 Sample calculation for specimen P-R2-V1-F 

Ultimate load value recorded      𝑃𝑃 = 84.68 kN 

Displacement at the ultimate load value    (𝜹𝒖) = 40.45 mm 

Load value corresponding to 2600𝜇 strain in rebar  𝑃𝑓 = 62.36 kN (Yield Load) 

Displacement at the yield load value     (𝜹𝒚) = 8.05 mm 

Ductility Index (∆𝑰) = 
(𝜹𝒖)
(𝜹𝒚)

 = 𝟏𝟏.𝟏𝟒
𝟖.𝟏𝟒

 = 5.02 
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C.3 Energy Absorption (Ѱ) value for C-R3-V1-F 

The energy absorption (Ѱ) is defined as the area under the load deflection curve up to 

the ultimate load value. The area under the curve can be computed easily using the Excel 

Software or any other related software. As, in this research project Mat-Lab software 

had been used to plot all the relationships (graphs). Therefore the energy absorption 

value had also been calculated using the Mat-Lab software.  

The required code in Mat-Lab software to get the energy absorption of any beam 

specimen: 

Energy_absorption = trapz (displacement_mid(1:the ultimate load value number), 

force(1:ultimate load value number)) 

The Appendix C (Figure 69) shows the Mat- Lab code for calculating the Energy 

Absorption for C-R3-V1-F beam specimen.  

Energy_absorption = trapz (displacement_mid(1:1309), force(1:1309)) 

 

Appendix C Figure 69: Mat-Lab code for C-R3-V1-F to calculate Energy Absorption 
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The calculated value of Energy Absorption had been displayed in the command window 

of Mat-Lab as shown in Appendix C (Figure 70). The Energy Absorption value came out 

to be 1959.3 kN-mm. On similar pattern, the energy absorption of all the beam specimens 

had been calculated. The values are shown in column 5 of Appendix C (Table  14). 

 

Appendix C Figure 70: Print screen of Command window of Mat-Lab software 
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Appendix C Table 14: Ductility Index and Energy Absorption values 

1 2 3 4 5 

 

Specimen 

𝜹𝒀 

(mm) 

𝜹𝒖 

(mm) 
Ductility Index  

(∆𝑰) 
Energy Absorption 

Ѱ (kN-mm) 

R1 15.03 36.49 2.43 1491.7 

R2 7.14 43.46 6.09 2724.9 

R3 8.8 39.51 4.49 3692.1 

C-R1-V1-F 8.38 20.33 2.43 998.7 

C-R1-V2-F 7.74 17.29 2.23 1132 

C-R1-V3-F 8.15 24.17 2.97 1485 

C-R2-V1-F 8.02 19.33 2.41 1210.7 

C-R2-V2-F 11.91 17.97 1.51 1358.8 

C-R2-V3-F 7.99 26.33 3.30 1623.8 

C-R3-V1-F 10.50 20.93 1.99 1959.3 

C-R3-V2-F 10.29 18.81 1.83 2025.4 

C-R3-V3-F 10.06 24.53 2.44 2719.5 

P-R1-V1-F 6.7 35.14 5.24 1665.1 

P-R1-V2-F 5.61 36.52 6.51 2323.2 

P-R2-V1-F 8.05 40.45 5.02 2804.2 

P-R2-V2-F 8.38 34.56 4.12 2980.1 

P-R3-V1-F 10.13 21.54 2.13 2266.5 

P-R3-V2-F 10.39 30.15 2.90 2943.2 
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APPENDIX D 

Cost Efficiency of TRM system compared to FRPs 

This section will give a brief overview of the cost for a beam that is being 

strengthened using TRM strengthening system (Flat – Type) of one layer; having 

dimensions of (150 x 260 x 2500) mm and then comparison has been made along 

with the FRP materials (Appendix D Figure 71). 

D.1 Cost details of the Carbon TRM system used in this research project 

Appendix D Tables (15) and (16) depicts the cost required to prepare one beam 

specimen strengthen with one layer of carbon TRM system.  

Appendix D Table 15: Cost details of the product 

Sr. 
No Product Name Unit Price per unit 

(QAR) 

1 Full roll of ARMO-mesh 
L600 Fabric 

per 
m2 60 QAR / m2 

2 Mortar  
Armo-crete (1bag = 25 kg) kg 107 QAR / bag 

 

Appendix D Table 16: Cost used to prepare 1 beam specimen using one layer of TRM system. 

Sr. 
No Product Name Layers Quantity used Cost 

(QAR) 
1 Carbon Fabric 1 0.315 m2 19/- 
2 Mortar used 1 8.33 kg 36/- 

 Total cost of material to prepare beam specimen 
strengthened with one layer of carbon textile 55/- 
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D.2 Cost details of the PBO TRM system used in this research project 

Appendix D Tables (17) and (18) shows the cost required to prepare one beam 

specimen strengthen with one layer of PBO TRM system.  

Appendix D Table 17: Cost details of the product 

Sr. 
No Product Name Unit Price per unit 

(QAR) 

1 Ruridel X Mesh Gold Fabric per 
meter 275 QAR / m 

2 Rureidel X Mortar -750 
(1bag = 25 kg) kg 145 QAR / bag 

 

Appendix D Table 18:  Cost used to prepare 1 beam specimen using one layer of TRM system. 

Sr. 
No Product Name Layers Quantity used Cost 

(QAR) 

1 Ruridel X Mesh 
Gold Fabric 1 0.315 m2 42/- 

2 Rureidel X 
Mortar -750 1 8.33 kg 49/- 

 Total cost of material to prepare beam specimen 
strengthened with one layer of PBO textile 91/- 
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D.3 Cost details of the FRP system available in the market 

Appendix D Tables (19) and (20) shows the cost required to prepare one beam 

specimen strengthen with Carbon Fiber Sheet using Sikadur Epoxy- 30 PL. 

Appendix D Table 19: Cost details of the product 

Sr. 
No Product Name Unit Price per unit 

(QAR) 

1 Carbon Fiber Sheet per 
meter 540 QAR / m 

2 Sikadur Epoxy- 30 PL  
(6 kg) 6 kg 300 QAR  

 

Appendix D Table 20: Cost used to prepare 1 beam specimen using one layer of TRM system. 

Sr. 
No Product Name Layers Quantity used Cost 

(QAR) 

1 Carbon Fiber 
Sheet 1 0.315 m2 81/- 

2 Sikadur Epoxy- 
30 PL (6 kg) 1 2 kg 100/- 

 Total cost of material to prepare beam specimen 
strengthen by Carbon fiber sheet with Sikadur Epoxy 181/- 

 

(The cost used here is changed to QAR based on the currency exchange rate available 

on date 2/1/2016). 
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Appendix D Figure 71: Cost comparison between the (Carbon and PBO) TRM systems and FRP 
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