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ABSTRACT 

A three dimensional computer model has been developed to analyze space 
structures containing cracked members. A new stiffness matrix for cracked space 
members has been obtained. This model takes into consideration crack surface 
mixed mode displacements due to the presence of axial and shearing forces and 
bending and torsional moments. Based on the present analysis, the redistribution 
of internal forces and moments and deformations in structural members can be 
obtained taking into consideration the effect of crack size and location and 
geometry of the structure. Examples of place frame, plane grid and space frame 
have been analyzed using a computer program developed based on the present 
model. This analysis can be employed to identify overstressed regions in plane or 
space structures due to members cracking. 

NOMENCLATURE 

A Cracked surface area 
Ax Cross sectional area 
a Crack depth, F.g. 1 
B Thickness of member cross section, Fig. 1 
b Distance from crack front to torsional force T, Fig. 3 
d Depth of member cross section, Fig. 2 
E Young's modulus 
F Applied force 
G Shear modulus 
I Moment of inertia of the cross section 
J Torsional rigidity of cross section 
K Stress intensity factor: 
L Length of the cracked member 
L1 Distance of crack measured from left end, Fig. 1 
~ Distance of crack measured from right end, Fig. 1 
M Bending moment, Fig. 2 
M1 Torsional moment, Fig. 3 
n Crack depth ratio (n = a/d), Fig. 5 - Fig. 7 
P Axial force, Fig. 2 
V Shearing force, Fig. 2 
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v Poission's ratio 
13 Horizontal deflection of frame 
T xy Shearing stress, Fig. 3 
::x: Factor depends on d/B 
6 X.ii Displacement in direction due to unit force applied m direction 
(F) Flexibility matrix 
(K) Stiffness matrix 
(S) Stiffness matrix 

INTRODUCTION 

Cracking of structural members may take place due to severe loadings, 
aggressive environmental attacks, design and construction erros (1). An advanced 
structural analysis is needed to determine effects of cracks on the redistribution of 
internal forces and variations in structure deformations and hence evaluate the 
structural integrity and identify the overstressed regions in the structure due to the 
presence of these cracks. The finite element method is used in many applications to 
analyze cracked structures by choosing special crack tip elements around the crack 
tip and the cracked member is usually analyzed as a continuum. This approach is 
useful in analyzing plate or shell types of structures. However in skeletal structures, 
this method requires a large number of computaions. Instead, another approach 
based on the matrix method has been employed recently to analyze plane frames 
and beams (2-5). In this approach the cracked member is considered as a discrete 
element connected at its end nodes. The force displacement relations at these ends 
have been formulated based on fracture mechanics techniques where stiffness 
matrices corresponding to plane cracked members have been obtained (2). Effects 
of axial, bending and shear deformations due to crack presence were only 
considered in the above mentioned work which is only suitable for plane structures 
(2-5). 

In the present paper, a new stiffness matrix has been developed to analyze three 
dimensional cracked structures taking into consideration effects of mixed mode 
displacements due to the action of axial and shearing forces, and bending and 
torsional moments which exist in local space members. 

STRUCTURAL ANALYSIS MODEL OF CRACKED SPACE MEMBER 

The relationship between displacements and forces at the two ends of the space 
frame member are assembled in a 12 x 12 matrix. To extend this method to analyze 
space structures containing cracked members as shown in Fig. 1a, the relation 
between the loads and the deformations at the two end nodes of that member in the 
form of a 12 x 12 matrix should be known. To obtain this matrix, the cracked 
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member is divided into three elements as shown in Fig. lb. The first and third 
elements are the common space frame elements with lengths L1 and L2 

respectively. The second element of zero length simulates the cracked section and 
connects the first and third elements. This cracked member has four nodes and 
twenty two degrees of freedom, six at each node. This procedure has been 
employed recently (2) to obtain the stiffness matrix for cracked plane frame 
members, where effects of axial, shear and bending deformations due to crack 
presence were only considered. In the next section, this analysis is extended to 
analyze space structures by considering the combined effects of axial, shear, 
bending and torsion deformations due to crack presence. However effects of in 
plane shear deformations due to shearing forces, V and torsional moment, Mt 

( b ) 

Fig. 1: Modeling of Cracked Space Member. (a) Geometry and degrees of 
freedom at the ends of cracked Member. (b) The Three elements represent 
the cracked space member. 

71 



M. H. El-Haddad 

shown in Fig. 2 are only considered. Effects of crack on out of plane shear 
deformations is neglected by keeping the same numbers 15 and 17 at both ends of 
cracked section corresponding to out of plane shearing and twisting deformations 
respectively. 

Stiffness matrices of size 12 x 12 corresponding to the first and third space frame 
elements shown in Fig. 1b are known (6). These matrices are not valid for the 
second cracked element and therefore a new stiffness matrix simulating the 
relations between the forces and deformations at the ends of the cracked section is 
developed in the next section. This stiffness matrix together with the stiffness 
matrices representing the first and the third uncracked elements, will be used to 
obtain an overall stiffness matrix of the cracked member of size 22 x 22. 

The system of numbering of the degrees of freedom at the four nodes shown in 
Fig. I b is taken such that the degrees of freedom at the two intermediate nodes, at 
the ends of the cracked section, have the last numbers. This will be usefui in the 
condensation of these nodes in order to obtain a stiffness matrix of size 12 X 12 
relating the forces and displacements at the ends of this cracked space member. 

STIFFNESS MATRIX OF CRACKED SECTION 

Stress Intensity Factor Solutions 

In the present case of three dimensionals cracked member shown in Fig. 1, three 
modes of crack surface displacements are considered as shown in Fig. 2a. In mode 
I, crack surfaces are pulled apart due to the presence of axial force and bending 
moment leading to axial deformations in the direction of degrees of freedom 13 and 
19 and rotations corresponding to the degrees of freedom 18 and 22. There are two 
other independent (shear) modes, as shown in Fig. 2a. Mode II is the in-plane 
forward mode, in which the crack surfaces moves normal to the crack tip but 
remain in the initial crack plane due to the application of shearing force V. The 
corresponding shear deformations act along the degrees of freedom 14 and 20 
shown in the figure. Mode III is the anti-plane (parallel) shear mode and it is 
equivalent to a tearing motion due to the presence of torsional moment applied at 
the ends of cracked surfaces. The corresponding deformations is twisting angles in 
the direction of degrees of freedom 16 and 21 shown in Fig. 2a. Solutions for the 
stress intensity factors corresponding to the above three modes are given below 
which needed in order to determine the mixed modes of the crack surface 
displacements shown in Fig. 2b. 

Solutions for the opening mode stress intensity factors for rectangular section 
subjects to axial force, P, and bending moment, M, and containing through crack 
shown in Fig. 2a are given below (7): 
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20 (V) 

(a ) 

( b ) 

Fig. 2: Modeling of Cracked Section. (a) Three modes of crack surface 
displacements. Mode I (K1) due to axial force (P) and bending moment M, 
Mode II (Kn) due to shearing force (V) and Mode III (Km) due to 
torsional moment (M1). (b) Mixed modes of crack surface displacements 
due to P, M, V and M1 • 

-; 2 3 4) KIP = [P 1/a (Bd)] [1.99 - 0.41n + 18. 70n - 3B.48n + 53.84n (1) 

2 2 3 4 
KIM= (6M va- /(Bd )] [1.99- 2.47n + 12.97n - 23.17n + 24.80n ] (Z) 

Solution for the stress intensity factor Kn corresponding the shear mode has been 
obtained recently by the author (2) and given below: 
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K II V = [ V Va I ( Bd) ] [ 1 . 99 + 2 . 3n 
3

) ( 3) 

Solution for the stress intensity factor Km1 corresponding to torsional moment 
M1 is developed based on the solution of cracked plate subjected to a lateral force, 
T, applied at the crack surface at distance b measured from the crack edge as shown 
in Fig. 3, where Knn is expressed at follows (7): 

d 

( c) 

Crack Surface 
Area 

y 

(b) 

Fig. 3: Determination of Stress Intensity Factor due to Torsion. (a) Shear stress 
distribution due to torsion. (b) Crack in beam subjected to torsional 
moment. (c) Torsional force acting on cracked section. 
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The above expression is extended to the present case by assuming the shear stress 
distribution shown in Fig. 3a due to torsional moment M1 . As the shear stress 
distribution varies along x andy axes. Fig. 3a. a double integration is carried out to 
apply the above equation as follows: 

d/2 B/2 I 
KIIlt J ( (2/ mal T dxdy/ [B v1-(d/2 - y)

2
/a

2
l 

(d/2-a)-B/2 xy 

where Txy is given by the following expression (8): 

C xy = ~xm [1-(2x/B) 2] 2Y/d 

and, 

Where rx is a factor depends on the d/B ratio (8) and is approximately is taken 
equal to 0.20. 

Completing the above integration, an expression for Km is obtained as follows: 

2 
Klllt = 1.9Mt r;- [TTd- 4a]/(d/B) (4) 

Crack Surface Displacements 

Based on Castiglianos theorem and suggestions made by Paris (7), crack surface 
displacements in directions of the degrees of freedom due to mixed modes of 
loadings shown in Fig. 2b, can be obtained according to the following integration 
(7, 9). 

Where 6. A.;i is the displacement in direction i due to unit force applied in 
direction j (flexibility or compliance), K1i, K11i and K111i are three modes stress 
intensity factors due to load applied in direction j. K1;, Km and K111; are the three 
modes stress intensity factors due to load F; applied in the direction of calculated 
deformation. And A is the crack surface area. 

Increases in compliance (flexibility) in directions of various degrees of freedom 
given in Fig. 2b can now be obtained by substituting from equations 1-4 into the 
above integration as follows: 

75 



M. H. El-Haddad 

[1.98n
2

- 0.544n3 + 18.65n4 - 33.697n5 + 99.26n6 

+436.84n
8 

- 460.48n9 + 289.98h 10 ] 
- 211.9n7 

(5) 

[1.98n2 - 3.27n3 + 14.43n4 - 31.26n5 + 63.56n6 - 103.36n7 

+ 147.52n8 - 127.69n9 + 61.5n10 ] (6 ) 

2 A 
l>;\mp = 2(1-ll) {[KIP ()KIM J dA = 6"Apm 

E O P ~ M 

[1.98n2 - 1.91n3 + 16n4 -

256.72n8 - 244.67n9 + 

2 A 

34.84n5 + 83.93n6 - 153.65n7 

133.55n10 J 

2(1-)1 ) s [ KIIV '"QKIIV J dA 
-E-

0 
-v- ~ 

A-. 2(1-V2 ) 2 5 81 u "vv= [ 1 . 98n + 1 . 8 3n + 0. 66n 
EB 

2 A 
D/-. = 2(1-V) ([ KIIIt 

tt E ) -M--
0 t 

t:Att= 22.2( 1-!12) [1.57n2 - 2.67n3 + 1.27n
4 J 

EB
3 

dA 

(7) 

(8) 

(9) 

It should be noticed that the remaining compliances (flexibilities); f:.A.pv, L:.A.mv, 

f:.Apt, f:.A.mt and their reciprocal terms are all equal zero due to the fact that K1v, 
Kit, etc. are equal zero. 

Flexibility and Stiffness Matrices of Cracked Section 

Based on the crack surface displacements relations obtained above, relations 
between forces and displacements in the form of a flexibility matrix can be 
simulated. Four degrees of freedom are assumed at both ends of the cracked 
segments as shown in Fig. 2b. These degrees of freedom correspond to axial (13, 
19), shear (14, 20), torsion (16, 21) and bending (18, 22) deformations. The 
flexibility matrix corresponding to the left end of the cracked segment, I, can then 
be assembled as follows: 

13 18 16 14 

'l'" .O)Ipo 0 0 

] 
18 6:>. ap .Oi\ .. 0 0 

[Fnl 16 0 0 1.1)\tt 0 

14 0 0 0 C>.')..vv 
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The inverse of the above flexibility matrix is the stiffness matrix corresponding to 
the end I, which is given as follows: 

where, 

13 
13l sPP 
18 s,P 

16 0 

14 0 

18 16 

0 

0 

5 tt 
0 

SPP = 6A11 1D, s .. 
s.P = sP• =- ~-'-p. 1 D , 

svv = 1 I D/1 vv • D = 

14 

l.J 
= .Oi\PP ID 

stt = 11 J:>;\t, 
2. 

6/,pp . lli\ .. - .6?--,., 

Then the stiffness matrix of the element 2 is shown in Fig, lb representing the 
cracked section (K)c can be written in the form: 

13 18 16 14 19 22 21 20 

sPP Spm 0 0 -sPP -s pm 0 0 13 

s.P su 0 0 -s.P -sn 0 0 18 

[ K ]c 0 0 stt 0 0 0 -stt 0 16 ( 10) 

0 0 0 5 vv 0 0 0 -svv 14 

-s pp -Spo 0 0 sPP Spo 0 0 19 

-s op -s .. 0 0 s.P s .. 0 0 22 

0 0 -stt 0 0 0 stt 0 21 

0 0 0 -svv 0 0 0 8vv 20 

STIFFNESS MATRIX OF CRACKED MEMBER 

Three stiffness matrices are mainly used to assemble the overall stiffness matrix 
of size 22 x 22 for the cracked member shown in Fig. L The first and third stiffness 
matrices are of size 12 x 12, corresponding to the first and third common space 
frame elements of lengths L 1 and L2 respectively, The second stiffness matrix 
simulates the cracked segment is given by equation 10 and of size 8 x 8 
corresponding to the degrees of freedom marked in equation 10, These three 
matrices are all located in the overall stiffness matrix in the corresponding positions 
referred to the chosen system of numbering for the degrees of freedom, Thus, the 
final form of the cracked member matrix (K) can be given in the following form: 

1,,12 13' .. 22 

[-A~h"- J ''"" l i2 (11) 

T I 13 
[ K l22x22::. B !Ox!O 1 C!Ox!O - 22 
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Where [A], [B] and [C] are matrices given in the Appendix. The above matrix 
can be condensed to a size of 12 x 12 by assuming the two intermediate nodes are 
unloaded. Hence, the stiffness matrix (Kt) relating forces and displacements at the 
exterior nodes of the cracked member shown in Fig. 1 can be written as follows: 

( 12) 

Thus the matrix given by equation 12 is similar in dimensions to the stiffness 
matrix of the common space frame member, and this matrix can be employed 
directly in the analysis of space structures containing cracked members using the 
stiffness method. This matrix can be assembled in the overall stiffness matrix of the 
whole structure together with the stiffness matrix of the common uncracked space 
frame members in the same manner. 

EXAMPLES 

Based on the method of analysis developed above, a computer program has been 
written to analyze three dimensional skeletal structures containing cracked and 
uncracked members. It should be noted that the present computer program is valid 
for any number of cracked sections provided that cracks are assumed at the tension 
side of the element cross section. This program can also be employed in the special 
cases of plane frames and plane grids by choosing the appropriate ·coordinate 
system of axes as shown below. 

The present model has been employed to analyze three examples; plane frame, 
plane grid and space frame as shown in Fig. 4-7. Geometry, dimensions, loadings, 
and locations of cracks chosen in these problems are indicated in these figures. 

Fig. 5 shows the variations of bending moment M1/M10 at the upper left cracked 
corner, variation of bending moment M2/M20 at the upper right corner and the 
variation of horizontal deflection &1/510 with crack depth ratio aid in plane frame 
problem. It should be noted that M10 and M20 are the original bending moment 
values at the upper left and right corners respectively for crack depth equal zero. 
Also 50 is the original horizontal deflection at frame corners when crack size is 
equal zero. 

As the crack depth ratio increases, the bending moment, M1 decreases, bending 
moment, M2 increases and deflection, 5 increases as shown in Fig. 5. This 
redistribution in internal forces and increase in deflection occurred due to the 
presence of the crack and is more pronounced as the crack depth increase. 
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y 

crack 

(a ) 

(b) 

Fig. 4: Examples of Plane Structures. (a) Plane frame example. (b) Plane grid 
example. 
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Fig. 5: Variation of bending moments and deflection due to crack presence in 
plane frame. 
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Fig. 6 gives the variations in bending moments and torsional moments at various 
sections of the shown plane grid cracked at the end of member 2 as shown in Fig. 4. 
These variations are presented using a non-dimensional parameters by dividing the 
instantaneous values by the original values corresponding to zero crack size. It is 
noticed that while bending moment and torsional moments decreased at cracked 
section, it increased at other locations as shown in the figure and the effect is more 
pronounced as the crack depth ratio increased. 
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Fig. 6: Variation of bending and torsional moments due to crack presence in plane 
grid. 

Fig. 7 presents the effect of crack presence at the end of member 8 in the space 
frame example, on the internal bending and torsional moments at various frame 
joints. It is noticed that while a decrease in bending and torsional moments has 
occurred at the cracked section, an increase in these moments has occurred at other 
uncracked sections. 

Comparing the results given in Fig. 7 with those corresponding to the plane 
problems, discussed above, it is noticed that the variation in internal forces in the 
cases of plane problems is much larger than in the case of space frame problems due 
to crack presence. In addition, the variations in moment values only occurred 
locally at points around the cracked section of the space frame. 
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X 

H 

z Bid :0.25 
(for all members) 

Fig. 7: Space frame example. 

Joint Member M!Mo M/Mw 

8 8 0.92 0.89 
6 2 1.01 1.003 
7 3 1.02 1.05 
6 6 1.05 1.10 

CONCLUSIONS 

Based on the stiffness matrix method and fracture mechanic techniques, a 
computer model has been developed to analyze three dimensional skeletal 
structures containing cracked members. This model takes into consideration crack 
surface displacements produced in mixed modes of cracking due to presence of 
axial force, bending moment, shearing force and torsional moments. This model 
can also be applied in the special cases of plane frames and plane grids. 
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Based on the results of three examples of plane frame, plane grid and space 
frame cracked at various locations, several conclusions can be made·: 

I. A redistribution of bending moments and torsional moments and deflections 
occurs in plane and space structural members due to the presence of crack. 

2. The effect of cracking on the variation of internal forces and deformations is 
more pronounced in plane type of structures compared with space structures 
where the variation is restricted to points around the cracked section. 

3. Bending and torsional moments are reduced at cracked sections and increased at 
other locations of uncracked sections depending on crack location, crack depth 
and geometry of the structure. 

4. The deformations in studied structures are shown to increase as the crack size 
increases. 

5. The present analysis is of use in identifying overstressed zones in buildings and 
structures which must be strengthened due to cracking. 
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APPENDIX: STIFFNESS MATRIX OF CRACKED SPACE MEMBER 

The stiffness matrices given in equations 11, 12 are given below: 

Matrix [A] 

(A] = A(I,J) 

I = 1,12 and J = 1,12 

All elements in matrix [A] are equal zero except the following: 

A( 1, 1) EAX/Ll 

A(2,2) 12EI/L1 
3 

A(3,3) 12EIY/L1 
3 

A( 4, 4) GJ/L1 

A(5,5) = 4EiyiL1 

A(6,6) 4EI/Li 

A(7,7) EA/Lz 

A(8,8) 12EI/Lz 
3 

A( 9, 9) 12EiyfL2 
3 

A(10,10) = GJ/L2 

A(l1,11) 4EIY/L2 

A(12,12) = 4EI/L2 

A(2,6) A(6,2) = 6EI/Li 
2 

A(3,5) A( 5, 3) = -6EiyfL1
2 

A(8,12) = A(12,8) -6EI/Lz 
2 

A( 9,11) = A(l1,9) = 6EIY/L2 
2 
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