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ABSTRACT 

Fixed-point iteration is an efficient technique for manual and machine 
calculation of normal depth. The method is applied to the solution of 
Manning's equation for two basic uniform flow problems in trapezoidal and 
circular channels. Computing normal depth when discharge and bed width, or 
diameter, are given, or computing bed width, or channel diameter, required to 
sustain a given discharge and normal depth. The iteration function has a 
standard form and uses only two variables, the area and hydraulic radius, for 

. various channel geometries. It has been tested over a wide range of the 
variables. Convergence to the correct normal depth occurred in an average of 
three to four iterations regardless of the starting value used. 

INTRODUCTION 

Uniform flow is defined as the condition in which flow variables do not change 
with distance, and hormal depth is the depth of uniform flow in open channels. Its 
occurrence in channels of uniform cross section may be relatively infrequent, 
however, it is a condition of such basic importance that it must be considered in all 
channel design problems [ 4]. 

The Manning equation is widely used for open channel uniform flow 
calculations. It cannot be solved explicitly for normal depth, except for triangular 
sections, and the determination of normal depth relied on graphical methods, tables, 
or trial and error solutions [1,4]. The use of digital computers has brought a shift 
towards the numerical solution of Manning's equation in which the Newton-Raphson 
method is invariably employed (e.g. Chow et al. [2] and McLatchy [6]). While 
effective, the Newton-Raphson method has some drawbacks. The iteration function 
and its derivative, which are different for each type of channel cross section, are 
required. The calculations may become quite lengthy and are generally not feasible 
on non-programmable calculators. 
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Fixed-point iteration, also called successive substitution, is an effective 
technique for solving nonlinear and transcendental equations. An initial 
approximation to the real root of an equation is used to calculate an improved 
approximation and the process is continued. The generated values will converge to 
the root, within tolerances set by the user, provided that the proper form of iteration 
function, satisfying the necessary and/or sufficient conditions for convergence, is 
found. 

In this paper, an iteration function for solving Manning's equation.is derived. 
The function is of standard form involving the area and hydraulic radius only and is 
applicable to trapezoidal and circular open channels. The function is shown to 
possess the necessary and/or sufficient conditions for convergence. It has been tested 
over a wide range of flow variables to demonstrate its accuracy and quick 
convergence. 

Manning's equation is also solved using the Newton-Raphson method to 
compare convergence properties, accuracy, and the effect of the starting value on the 
speed of convergence. 

FIXED - POINT ITERATION 

Fixed-point iteration is treated in standard books on numerical analysis (eg. 
Conte and de Boor [3], Stark [7], and Hildebrand [5] ). To obtain the real root of an 
equation f{x)=O, it is written in the equivalent form x=g(x) so that the solution of the 
second form is also a solution of the first. A recurrence relationship, Xi+t=g(xi), is 
then used to generate successive values ofx which will converge to the root 1; of the 
equation. The general requirements under which the recurrence relationship is useful 
for the solution of the problem are : 

1. For a given starting value Xo, it is possible to cal~ulate successive values 
Xt,X2,··· 

2. The sequence x~, x2, ... converges to some point 1;. 

3. The limit 1; is a fixed point of g(x), that is !;=g(!;). 

Conditions for Convergence 

The conditions necessary to satisfy the above requirements, i.e. to ensure 
convergence to the root off{x) are stated by Conte and de Boor [3] as follows: 
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1. That there is an interval l=[a,b] such that for all xel, g(x) is defined and 
g(x)el. This may be restated that as;g(x)~ for all x such that~ [5]. 

2. The iteration ftmction is differentiable on l=[a,b]. Further, there exists a 
nonnegative constant K <1 such that for all xel,lg'(x)IS:K over the entire region. 
This condition implies that g'(x) is continuous on l=[a,b]. 

An iteration function satisfying the above two conditions has exactly one fixed 
point ~ in I, and starting with any point Xo in I, the sequence Xt. x2, ... generated by 
fixed-point iteration on Xi+t=g(xi) converges to~ [3]. 

Trapezoidal Channels 

Consider uniform flow in a channel with a trapezoidal cross section whose bed 
width is B, depth of flow is y, and side slopes are 1 vertical on z horizontal (a 
rectangular section is a special case for which z=O). The cross sectional area is 
A=y(B+zy) and the wetted perimeter is P=B+2y...J(1+z2). The Manning equation is 

(1) 

in which Q is the discharge, n is the roughness coefficient, S is the longitudinal slope 
of the channel bottom and R is the hydraulic radius which is equal to AlP. The 
product AR213 is called the section factor for uniform flow [1]. Substituting for A 
and P, Equation ( 1) becomes 

Qn (y(B + zy)f/3 

JS = [B+2y~r3 
(2) 

Factoring out y813 from the right-hand-side and solving for y, one form of the 
iteration function is 
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3 
2 8 

( B +2.Jl+z2)3 
Qn y 

y= .JS 

Qn 

.JS = 

3 

8 

y = g(y) (3) 

A second form of the iteration function may be obtained by factoring out y513
, thus 

3 3 
2 -

Qn -

Qn(B+2y~)3 
5 5 

y= = .JS y = g(y) 
.JS 5 2 

(B + zy)3 -
AR3 

(4) 

Convergence of the iteration functions 
In order to ensure the existence of exactly one fixed point of each iteration function g(y) 
and the convergence of the iteration to this root, it must be shown that Equations (3) 
and (4) satisfy the two conditions stated in the section on convergence. The first 
condition is that in the interval I=[a,b], ~g(y)s;b for all y such that ~ys;b. 
Considering that the normal depth, y, may have any positive value between zero and 
infinity, the interval I is the open interval I=[a=O, b=oo]. To show that g(y) also 
belongs to this open interval one proceeds in the following manner. Both A and R 
are increasing functions of y [1,8]. At the fixed point y=s, QnJ...JS =A(s)R(s)213

. 

Therefore for any value y=a<s , A(a)R(a)213<A(s)R(s)213 and the value of the 
multiplier N= A(s)R(s)213/A(a)R(a)213 in Equations (3) and (4) will be a finite 
positive number greater than 1. Hence g(a<s)= N3180

r
315 a>a. At a=s the multiplier is 

unity and g(a)=a. Thus, for any y=~s , g(a)~a. Similarly, for any y=b~s , 
A(1;)R(s)

213
$A(b)R(b)213 and the corresponding multiplier in the iteration functions 

will be a nonzero positive number equal to or smaller than 1, hence g(b)s;b. It is thus 
established that g(y) belongs to the open interval l=[a,b]. 
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The derivative of the iteration function g(y) in Equation(3) with respect toy 
IS: 

3 I 

, -(Qn)i ys(B+2y.J1+z2)4 [ 3 1 2~ 5 z ] g(y)-- -+- ----
.JS (B+zy)i 8y 4 B+2y~ 8 B+zy 

(5) 

Qnl..JS may take any positive finite value and is always equal to A(~)R(~f3 
, 

where ; is a particular fixed point. It is the value of g'(y) near a fixed point that 
determines whether or not the iteration converges [3]. Since we are interested in the 
value of g'(y) near all fixed points in the interval I=[a,b], we let~= y then 

(6) 

Substituting this expression in Equation (5) one obtains, 

'() 3 1 y~ g y = - +- ____::....__---=== 
8 2B+2y~ 

5 zy 

8 B+zy 
(7) 

Similarly the derivative of the second iteration function, Equation (4), is found to be 

'() 4 y~ zy g y =-
5 B+2y~ B+zy 

(8) 

The limiting values of the derivative in Equation (7) are 0.375 and zero for 
y=O and y=oo, respectively. The corresponding values of Equation (8) are -0.6 and 
zero. For the rectangular cross section, the values for Equation (7) are 0.375 and 
0.625 and for Equation (8) zero and 0.40 . This establishes that both iteration 
functions also satisfy the second condition, i.e. lg'(y)l:5: K<l , and thus ensures the 
existence of exactly one fixed point in the open interval I=[O,oo] and the convergence 
of both functions to this fixed point regardless of the starting value of the iteration. 
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The computational algorithm 
The choice of which of the two iteration functions to use depends on the convergence 
rate of the two functions in the region in which a solution is sought. This rate is 
dependent on the value of the derivative in the region. If g'(y) is near zero in the 
entire region then quick convergence is assured [7]. 

The variation of the absolute value of the derivatives of the two functions is 
shown in Fig. (1) as a function ofB/zy for side slopes z of0.2 and 4. The derivative 
of Eq. (3), whose exponent is 0.375, increases from zero at B/zy=O to 0.375 in the 
limit as B/zy~oc. The derivative of Eq. (4) whose exponent is 0.6, on the other 
hand, decreases from 0.6 at B/zy =0 to zero as B/zy~oc. The two curves intersect in 
the region near B/zy = 1.0. Evidently, faster convergence is obtained with Eq. (3) 
when B/zy is less than one and with Eq. (4) when B/zy is greater than one. 

0.6 

0.4 
lg'(Y)I 

0.2 

• I t • . : . . . 
M if ~ ~ II j I • 

X X X X X X X X 
X a a a a a a a a 

X a 
• 
• I I 6 $ : : : : ! 

0+-+-+-+-+-+-+-+-+-+-+-+-+-+-~~~~~ 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 10 

B/zy 

Fig. 1. Variation ofthe absolute value ofthe derivative with B/zy 

A computational algorithm that takes advantage of the convergence properties 
of the two functions is shown in Fig. (2). The iteration is started with the seed value 
yo=B/z, or B/zy=l, using either of the two functions. The new value y, is then 
compared with the seed value y0. Ify1>y0 then B/zy1<1 and Eq. (3) is selected for the 
remainder ofthe iterations, otherwise, the algorithm switches to Eq. (4). 
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280 Enter Input Values(Q, n, S, B, z) 

290 Q= Q*ni../S: ET= 0.375: Y1=B/z: P=O 
300 REM START ITERATION 
310 P=P+1 
320 PW=B+2*Y1*SQR(l+Z"2): A1=Y1*(B+Z=Y1) 
330 H1=(A1/PW)".667: Q1=A1 *H1 
340 Y2=(QN/Q 1 )"En*Y1 
350 IF P>1 THEN GOTO 370 
360 IF Y2>Y1 THEN ET=.375 ELSE ET=.6 
370 IF ABS(Y2-Y1)> 0.01 THENY1=Y2: GOTO 310 
380 PRINT RESULTS 

Fig. 2. Computational algorithm for trapezoidal channels 

Circular Open Channels 

The geometry of uniform open channel flow in circular sections is expressed in 
terms of the diameter d and the angle a subtended by the wetted perimeter, Fig. (3). 
The depth is y=d(1-cos(9/2))/2, the flow area A=d2(9-sin9)/8, the wetted perimeter 
d·912, and Manning's equation becomes 

y d 

Fig. 3. Definition sketch of circular channels 
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2 8 5 

Qn 2 3 d 3 (8-sin8)3 
JS=32 (9) 

The iteration function is obtained by factoring out a813 from the right hand side and 
solving, 

(10) 

Convergence of the iteration function 
The choice of interval in which to seek a solution for normal depth in circular 
channels is governed by the restriction on the values that the angle a may take (zero 
to 21t) and by the specific nature of the variation of the section factor, AR213

, with a. 
Recalling that AR213 has a maximum at a=l.681t (or y=0.938d), this fixes the upper 
bound, b, of the interval I at b=l.681t, since the section factor is an increasing 
function only up to a= 1.681t where the discharge is a maximum. In practical terms 
this depth may be considered the full depth in the conduit [ 1]. The case of a=O is of 
no practical interest and the interval becomes the open interval I=[a=O, b=l.681t]. 
Using similar arguments as those for the trapezoidal case, it is easily shown that for 
any a=aS~, g(a)~. and for any a=b~~, g(b) is positive and g(b)$b. This, however, 
does not necessarily lead to satisfaction of the first condition since for some high 
values of the fixed point ~. g(a) will be greater than the upper bound b, which 
necessitates placing a restriction on the value that the lower bound a may take. 

Numerical experimentation has shown that setting the lower bound a=0.51t 
ensures that in the closed interval I=[a=0.51t, b=l.681t ], aSg(a):5:b for all a such 
that aSa:5:b. It must be emphasized that this restriction on the lower bound of the 
interval I does not place any restriction on how small a value the root ~ may have. It 
is merely a restriction on the initial value of a used to start the iteration, to ensure 
that the sequence does not lead to values of a greater than 1.681t, which may cause 
g(b) to be greater than b and lead to a values greater than 21t in subsequent 
iterations. 

The derivative of the iteration function, Equation (10), can be shown to be 
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g'(S) = ~[2 _ 9(1- ~os9)] 
8 e- sme (11) 

The value of g'(S) is undefined when 8=0. Taking the limit as a~o, g'(0)=-
0.625. Numerical evaluation of Equation (11) indicates that g'(S) increases with 
increasing a, reaching a value of0.9999 when 8=l.681t. The second condition for 
convergence, that lg'(8)1<1 in the interval 1=[0, l.681t], is thus satisfied ensuring the 
existence of exactly one fixed point in this interval and the convergence of the 
iteration function to it. As a consequence of this condition the iteration will always 
converge to the lower value of depth in the region where it is possible to have two 
different depths for the same discharge, one above and one below the value of 
0.938d. 

Bed Width and Channel Diameter 

Another type of uniform flow problem in trapezoidal and circular channels is · 
that of computing bed width, or channel diameter, required to sustain a given 
discharge and normal depth. Without going into details, the iteration function for 
trapezoidal channels is 

(12) 

with the derivative, g'(B), equal to zero as zy/B~O and to 1.0 as zy/B~. For 
circular channels the iteration function is cast in terms ofy/d and takes the form 

3 

~ =[ Q~~ J(~) (13) 

with derivative, g'(y/d), equal to 0.81 at 8=0.11t and equal to -0.94 at 8=1.91t. 
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THE NEWTON- RAPHSON METHOD 

In the Newton- Raphson iteration method the root x of an equation ofthe form 
f(x)=O is found by expanding f(x) in a Taylor series about a neighboring point Xo 
and retaining only the first term of the expansion thus, 

f(x) = f(Xo) + (x-Xo) f(Xo) = 0 

Solving for x, 

or, more generally, in a form suitable for iteration 

,f'(xd:t: 0 (14) 

Convergence of the Iteration Function 

The iteration function Eq.(l4), is seen to be a special case ofx=g(x) in which 
g(x)=x-f(x)/f(x), thus g'(x)=f(x) f'(x)/[f(x)f Now, iff(x):;eO and f'(x) is finite, 
there follows g'(~)=O so that the convergence factor (the ratio of the error in Xk+I to 
the error in Xk) tends to zero when and ifXk~~[5]. If the curve representing y=f(x) 
possesses turning points or inflections in the interval between the initial estimate Xo 
and the true root ~. or between Xo and x1 , the iteration may not converge to~­
However, iff(x) and f'(x) do not change sign in the interval (Xo, ~),and iff(Xo) and 
f'(Xo) have the same sign, so that the iteration is initiated at a point at which the 
curve representing y=f(x) is concave away from the x-axis, it can be seen that 
successive iterates must tend to x=~ and that they all lie between Xo and~ [5]. 

Trapezoidal Channels 

In applying the Newton-Raphson method, Manning's equation is written in the 
form 

f(y) = AR213- Qn 
JS 
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Taking the derivative off(y), 

f'(y)= 2 ~ dR +R213 dA 
3 R 113 dy dy 

= AR 2/3[2_ dR + _!_ dA] 
3R dy A dy 

f'(y) = AR 213[(B + 2zy) (5B + 6y.J1 + z
2

) + 4zy
2
.J1 + z

2
] 

3y (B + zy) (B + 2y.J1 + z2) 

Substituting in Eq.(14) and simplifying, the iteration function becomes 

1- Qn/.JS 

Y· I =Y·- (B+zy2y/3 /(B+2y.JI+z2 rJ 
t+ 

1 

(B + 2zy)(5B + 6y.J1 + z2) + 4zy2.J1 + z2 

3y(B + zy)(B + zy.J1 + z2) 

1- Qn/.JS 

(16) 

(17) 

A· 513 jp. 2/3 
=y· - 1 1 s 

1 

5(B + 2zyi) 4.J1 + z2 
(17.a) 

3A· 3P· 1 1 

Circular Open Channels 

The Manning equation for circular open channels may be written in a 
normalized form 

(()-sin 0) 513 32 Qn 
/(B)= ()213 - 2zt3 dst3 .JS (18) 
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with the derivative 

f'(O) = [e- sin 8]5
'

3[5 e- e~ose _ 2] 
e 3 e-sme 3 

(19) 

The value off(9) is undefmed at 9=0. Taking the limit as a~o, f(O)=O which 
violates the condition that f(9):;t:O. This, however, is of no practical consequence 
since it represents a condition of no flow and can be excluded from consideration. 

Substituting Eqs. (18) and (19) into Eq. (14) and simplifying, the resulting 
iteration function is: 

32 Qn 

B.-
22/3 d813 JS 

I 

(1- sin B; )5'3 

Bi+l =B;-
B; 

(20) 
5 1-cosB; 2 
3 1_sinB; 3 

B; 

TESTING OF THE ITERATION FUNCTIONS 

The iteration functions were systematically tested over a wide range of channel 
cross section and normal depth values. The main objectives were to determine the 
accuracy of the computed values, the speed of convergence and the effect of the 
starting values on speed of convergence. 

Target values of the section factor for uniform flow, Qni"'-IS=AR213
, were 

generated for a given channel geometry and normal depth. The computational 
algorithm was then used to calculate the normal depth corresponding to this target 
value. 

Trapezoidal Channels 

The basic target generating algorithm consisted of three loops. The outer loop 
generated values of B/zy from 0.2 to 1.0 in increments of0.2, from 2 to 10 in 
increments of2, and from 20 to 100 in increments of20. The middle loop generated 
values of the side slope, z,from 0.5 to 5 in increments of 0.5. The inner loop 
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generated ten values of normal depth, which shall be termed the true depth, between 
0.1 and 1. 0. The same procedure was repeated using depths between 1. 0 and 10. 
The total number of target values was therefore 3000. The iteration started with the 
seed value y=B/z, and was continued until the absolute difference between two 
successive iterations was equal to or smaller than 0. 01. 

Fixed point iteration 
Both iteration functions, Equation (3) and Equation (4) whose exponents are 0.375 
and 0.6, respectively, were tested, since the algorithm automatically selects the 
iteration function depending on the value of B/zy. The results of these tests are 
summarized in Table (1) which shows the average number of iterations and the root­
mean-square (RMS) difference between the true depth and the computed depth. The 
algorithm converged to the correct root in an average number of iterations varying 
between 4.5 and 3.0 depending on the value of B/zy. In general the iterations 
averaged 3.8 for 1s;y~;JO and 3.1 for O.ls;ys;l.O .. 

Table 1. Results of Testing the Fixed- Point Iteration Function 
for Trapezoidal Channels 

0.1 s; s; 1.0 1s;ys;l0 
B/zy Avg. No. of RMS Avg. No. of RMS 

Iterations Error Iterations Error 
0.2 3.6 3.8XlQ4 4.5 3.9X104 

0.4 3.6 7.0X104 4.7 7.4X 104 

0.6 3.3 1.3X 104 4.7 1.1 x w-3 
0.8 2.8 1.6X 104 4.4 1.4X w-3 
2 3.4 4.8X 104 4.4 4.7X 104 

4 3.1 2.8X 104 3.9 2.3X104 

6 3.0 1.5X 104 3.8 1.1 X 104 

8 3.0 8.5x 10·5 3.8 7.1 X 10"5 

10 3.0 5.5x 10·5 3.7 7.ox w-5 
20 3.0 2.1x 10·5 3.4 5_9x w-5 
40 3.0 1.8X 10·5 3.0 2.6x 10·5 

60 3.0 1.1 X 10·5 3.0 1.2X w-5 
80 3.0 1.1 X 10"5 3.0 7.1X10-6 

100 3.0 8.2X 10-6 3.0 4.6X 10-6 
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Both iteration functions possess robustness in that they are insensitive to the 
starting value of iteration. Equation (3) (exponent 0.375) converged to the correct 
root in an average of6.5 and 7.0 iterations when the starting value is 5 and 0.2 times 
the true depth, respectively. The corresponding values for Equation (4) were 6.6 and 
6.0 iterations. Starting the iteration with a value 500 times the depth increased the 
average number of iterations by 0.5 in both iteration functions. 

Although the tolerance limit was set at O.Olm, it was observed that the 
computed depth was generally within ±O.OOlm of the true depth or better. Tests with 
very small and very large B/zy, z and y values indicated no limitations of either 
iteration function as to convergence or accuracy regardless of the starting value, 
only the speed of convergence was affected. 

Problems of best hydraulic section are easily solved by fixed-point iteration. 
The relationship between bed width and depth, B=2y(-../(l+z2)-z), is simply inserted 
in the algorithm so that the iteration function is entered with the value of depth and 
its corresponding bed width. For z values equal to or greater than 0.9, the value of 
B/zy is smaller than 1.0 for best hydraulic sections and Equation (3) converges 
quicker in this range. For the general problem however, the same computational 
algorithm may be used. 

The iteration function for computing bed width was similarly tested and found 
effective. Starting with a B value 5 times the correct bed width, the iteration function 
converged in an average of 12.8 and 5.2 iterations when B/zy was smaller than 1.0 
or greater than 2.0, respectively. The average number of iterations remained 
practically the same even when the starting value was 50 times the correct bed 
width. 

Newton-Raphson iteration 
Four values were used to start the iteration. The first two, considered an educated 
guess of the root, were the upper and lower limits of normal depths in the target 
generating algorithm. A value 10 times larger than the upper limit and another 10 
times smaller than the lower limit were used as extreme guesses. The results of 
testing are shown in Table (2) as the variation ofthe number of iterations with B/zy 
for each starting value. Each number in the table is the average number of iterations 
in 100 computations of normal depths for the particular B/zy value. 

In general, the number of iterations decreases with increasing B/zy and levels 
off at about B/zy=4. More important is the apparent sensitivity of the speed of 
convergence to th.e starting value. Starting from the lower extreme value required 
an average (in 3000 computations) of over 1000 iterations for convergence, while 
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Table 2. Results of Testing the Newton-Raphson Iteration for Trapezoidal Channels 

0.1 ~ y ~ 1.0 1.0~ y ~ 10 
Startin Value Startin Value 

0.01 0.1 1.0 10 0.1 1.0 10 
3308 58.1 7.6 72.7 3309 58.8 8.2 
2048 41.4 7.3 68.4 2048 42.0 7.9 
1629 34.7 7.0 65.3 1630 35.4 7.7 
1424 31.3 6.9 63.0 1424 32.0 7.6 
1303 29.1 6.7 61.4 1303 29.8 7.4 
1075 24.9 6.5 56.6 1076 25.6 7.2 
979 23.2 6.4 53.7 979 23.9 6.9 
953 22.9 6.3 52.7 954 23.6 6.9 
942 22.8 6.3 52.3 943 23.4 6.9 
936 22.6 6.3 52.1 937 23.4 6.9 
927 22.6 6.3 51.9 928 23.2 6.9 
925 22.6 6.3 51.9 925 23.2 6.9 
924 22.5 6.3 51.8 924 23.2 6.9 
924 22.5 6.3 51.8 924 23.3 6.9 
924 22.5 6.3 51.8 924 23.3 6.9 

1281 28.2 6.6 57.2 1281 29 7.2 
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starting from the upper extreme value required an average of about 60 iterations. It 
is also notable that approaching the root from above is more efficient than 
approaching it from below. Thus starting at the upper limit of normal depths 
required an average of 6.9 iterations as compared to 28.6 iterations for starting at 
the lower limit. 

The accuracy of the computed normal depths was very good. Although the 
tolerance limit was set at 0.01m, it was observed that the maximum RMS difference 
between the computed and true depths did not exceed 0.0005m in all computations. 

Circular Channels 

The target generating algorithm generated normalized section factors for 
uniform flow, Qn/d813VS, for 20 values of9 between 0.11t and 21t, termed the true e. 
The iteration was started with a given value of 9 and was continued until the 
absolute difference of9 values in two successive iterations was 0.010 rad or less. 

Fixed point iteration 
The average number of iterations, over the whole range of true 9 values, was 6.6 
and 8.0 iterations when the starting value was 1t/2 and 1t, respectively. The average 
number of iterations was approximately the same when the value of true 9 was equal 
to or smaller than l.681t. Values of true 9 between 1.68 and 21t, are in the range 
where it is possible to have two different depths (9's) for the same discharge [1]. In 
this range the iteration function converged to the lower value of9 (1.437t-l.687t) as 
indicated earlier. Starting with 9=1.57t resulted in faster convergence with an 
average of 6.4 iterations. The accuracy of the iteration function was such that the 
ratio of the computed normal depth to the true normal depth was between 0.99 and 
1.01. Reducing the error tolerance to 0.005 radians increased the average number of 
iterations by about 1.5 with the accuracy improving only in the range of very low 
y/d ratios which are not of practical importance. 

The iteration function for computing channel diameter required to sustain a 
given discharge and normal depth has been tested over the range of 9=0.11t to l.81t. 
For 9 values between 0.5 1t and l.81t corresponding to 0.146~y/<±:;0.975 , the 
average number of iterations is 12.6 and 11.3 when the starting 9 value is 1tl2 and 1t, 
respectively. The ratio of computed to true depth varied between 1. 0 and 1. 01. For 9 
values smaller than 0.41t, corresponding to y/<±::;0.097 , the average number of 
iterations is 15 and 17.5 for starting values of 1t/2 and 1t, respectively. 
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Newton Raphson iteration 
The iteration function is subject to the same restrictions applicable to fixed-point 
iteration regarding the interval [0 to l.681t] in which to seek a solution. This 
required restricting the starting a to values between 0.81t and 1.31t, since starting 
iteration with values outside of this range produced a values greater than 1.681t and 
prevented convergence by leading to a values greater than 21t. It is emphasized again 
that this restriction on the lower and upper bounds of the interval I does not place 
any restriction on the value the root ;may have. It is merely a restriction on the 
initial value of a used to start the iteration, to ensure that the sequence does not lead 
to values of a greater than 1.681t. With this method the iteration will also converge 
to the lower value of depth in the region where it is possible to have two depths for 
the same discharge. 

The average number of iterations, over the whole range of true a values, varied 
between 4.1 and 4.4 iterations when the starting value was 1.31t and 1t, respectively. 
The accuracy of the iteration function was such that the ratio of the computed 
normal depth to the true normal depth was between 0.999 and 1.00. Reducing the 
error tolerance to 0.005 radians did not significantly change the average number of 
iterations nor improve the accuracy of the computed y/d ratios. 

COMPUTATIONAL ECONOMY 

The computational economy of fixed-point iteration is demonstrated by 
comparison with the Newton-Raphson method. The cost of computation is directly 
related to the total number of computer operations involved and comparison may be 
made on this basis. Examination of the present and two other routines for solving 
Manning's equation [2,6] shows that when counting exponentiation as two 
operations and excluding the constants, the minimum number of operations required 
for each iteration is 25 and 22 for trapezoidal and circular sections, respectively. 
The corresponding numbers for fixed-point iteration are 13 and 7. 

Thus, using the best guess for the starting value, the Newton-Raphson method 
requires an average of 172.5 operations compared to 45.1 operations for fixed-point 
iteration. The solution for circular sections requires, on average, 53.3 operations 
with the Newton-Raphson method compared to 44.8 with fixed-point iteration. 
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CONCLUSIONS 

Fixed-point iteration is applied to the solution of Manning's equation of 
uniform open channel flow. The iteration function has a standard form and uses only 
two variables, the area and hydraulic radius, for various channel geometries. The 
method is tested over a wide range of discharge and cross sectional parameters and 
is found to have excellent convergence properties. The iteration function is simple, 
insensitive to the starting value, and can also be used on hand calculators. 
Comparison with the Newton-Raphson method shows that, for trapezoidal sections, 
fixed-point iteration requires at most one-fourth of the computational effort while for 
circular sections it requires about 80% of the computational effort of the Newton­
Raphson iteration. 
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