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ABSTRACT 

This paper proposes a new three node curved shell element. The approach 
used in the development of the new element is based on the Marguerre 
shallow shell theory which incorporates the effects of initial curvature (out­
of plane displacement) of the shell but avoids locking and kinematic mode 
created by the coupling between the membrane and the bending 
deformations. The decomposition mode technique is used to alleviate the 
membrane locking prqblem and also to improve the membrane bending 
performance. In the formulation of the new element, the Mindlin-Reissner 
kinematic hypothesis is adopted to include the transverse shear effect. The 
Discrete Strain Theory (DST) is used to avoid the shear locking problem 
found in thin shells. The resulting element is the superimposition of the 
Constant Strain Triangle (CST) element on the Discrete Shear Triangle 
(DST) element. This formulation enables us to obtain a shell element, which 
does not produce spurious singular modes, avoids locking phenomena, and 
excels in calculation efficiency. The results of several examples show that, 
the proposed shell elements accuracy and convergence of the proposed 
numerical modelieure quite satisfactory, desipite its simplicity. 

KEY WORDS: Shear locking, membrane locking, decomposition mode technique, 
Marguerre's theory, discrete strain. 

INTRODUCTION 

The construction of a simple and efficient numerical model for curved structures 
modelling is an important subject, which is still of interest to researchers . Generally, 
two problems are encountered during the modeling of curved structures. The first 
one is the geometrical representation of the structure, which is solved by the 
Marguerre shallow shell theory (incorporates the effects of the initial deflection in 
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the strain tensor). The coupling between membrane end bending deformations 
creates the membrane locking phenomenon which is treated by the decomposition 
mode technique [ 1], [2] and [3]. The second one is the identification of the 
transverse shear and membrane locking phenomenon effects [2} and [4]. The type of 
shear locking is associated with the overconstraining effect of the condition of zero 
transverse shear strain energy on the assumed displacement field for thin shells. 
The membrane locking is due to the overconstraining effect of the condition of zero 
membrane strains for curved shells. These problems are more critical for lower­
order elements, which are preferred in the analysis of nonlinear problems because of 
their simplicity and modleing easiness . 

To alleviate these deficiencies, several methods have been proposed by many 
investigators in the past such as the Selective and Reduced Integration schemes [5], 
[6], Heterosis elements [6], Stabilization methods [3], and Discrete Kirchhoff 
elements [7], etc. 

With the aformentioned developments, it is possible to obtain a number of 
successful co displacement-based shell elements. These approaches, however, 
provide a number of limitations. The selective or reduced integration scheme is not 
always successful in overcoming the locking problem . Thus, the resulting solutions 
may be overstiff for problems with highly constrained boundaries when coarse 
meshes are used. Furthermore, these schemes may engender rank deficiency for 
problems with lightly constrained boundries [3], [5]. Heterosis elements exhibit 
overstiffening effects for problems with irregular mesh [8]. The stabilization 
methods involve certain parameters which still lack appropriate physical 
interpretations. Discrete Kirchhoff elements (DKT, DKQ) do not include transverse 
shear deformation effects. These elements restrict transverse shear deformations 
(situations always enwantered in the sandwich and laminated composite structures). 

Lardeur and Batoz [7] developed the Discrete Shear Triangle (DST) plate 
element element which is, highly satisfactory in flexure. The formulation ofthe DST 
plate element is based on a generalization of the Discrete Kirchhoff Technique to 
include transverse shear effects. It coincide with the DKT (Discrete Kirchhoff 
Triangular ) plate element if the shell thickness becomes thin. The purpose of the 
present paper is to combine both the (DST) plate element and the Constant Strain 
Triangular (CST) membrane element and taking into account an initial curvature 
(according to the Marguerre's theory). The resulting shell element is called Discrete 
Shear Triangle in Marguerre theory (DSTM). This element is applicable to both thin 
and thick shells and can be easily implemented and incorporated into existing finite 
element analysis programs with minimum modification. In this paper, we first 
present the Marguerre shallow shell theory and its advantages in solving curved 
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structures. The linear generation of the mesh will then be presented (i.e., the 
definition of the reference axes, information on area coordinates and description of 
the membrane and flexural behavior). Special attention was paid to the coupling 
between membrane and flexural behaviour, in order to avoid membrane locking and 
the coupling between flexural and shearing behaviour in order to alleviate the shear 
locking. Numerical examples are presented to evaluate the performance of the 
developed element .The proposed element,which has no hourglass modes, has a 
rapid convergence, provides a reasonable stress accuracy , and also improves the 
membrane bending behaviour of the shell. 

MARGUERRE SHALLOW SHELL THEORY 

Introduction 

The two main approaches used for solving the linear analysis of curved structures 
are: 

1. The facet approximation approach by flat elements, which presents a 
simple formulation but requires generally a high computer cost. This is caused 
by the fine discretization necessary for correctly modelling the curved geometry. 

2. The shell element approach whose first advantage is the correct modelisation 
of the curved geometry. However, its manipulation is often difficult especially 
when using curvilinear coordinates. 

The Marguerre's theory is in partial agreement with above- mentioned these 
points. Indeed, this theory is used for shallow shell elements and allows convergence 
towards deep shell solution [9]. This is not the case for an element developed in 
curvilinear coordinates with a shallow shell theory [9]. The computation is 
performed in Cartesian coordinate and on a straight configuration. 

The Marguerre's theory and its exceptional ability in obtaining accurate 
numerical solution to general shell problems is introduced here in. for more details 
the reactor is referred to [ 1 ],[2],and [3]. 
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General Idea of Marguerre's Theory 

This theory was developed for shallow shells. It considers that the undeformed 
shell configuration is obtained after a fictitious displacement of the plate. The effects 
of this fictitious displacement are introduced as an initial deflection w 

0 
in the linear 

part of the strain tensor. The computation is performed on a Co-rotational system of 
axes, which gives a correct representation of rigid body motion. 
The modified strain tensor for a plate can be expressed as : 

(1) 

with: azwo « 1 azwo « 1 (2) 
ax} &2 

I J aw . 
The terms with axo are the membrane terms induced by the initial curvature w

0
. 

l 

This curvature creates the coupling between membrane and bending. In this case the 
inextensional bending mode cannot be represented exactly. This phenomenon is 
called the membrane locking. The use of the decomposition mode technique 
prescribed by Stolarski et al [10] solves this problem. It consists of correctly 
defining the relation ship between membrane and flexure effects. 

Based on this approach, a curved triangular element for the linear analysis of 
shells (thin or thick, shallow or deep) is presented in [11]. efficiency of this element 
to solve linear behaviour of curved structures (Fig. I and Fig.2) was proven. 

z K 

X J 

Fig.l. General idea ofMarguerre's theory 
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THE DSTM TRIANGULAR CURVED SHELL ELEMENT 

Introduction 

Th shell element is a simple three nodes shallow element, with six degrees of 
freedom at each node. It has only comer nodes and is implemented in a cartesian 
coordinate system (Marguerre theory). It can be shown that such an element 
converges towards the deep shell solution [9]. The membrane strains are constant 
over the element. For the flexural behaviour, a discrete Mindlin-Reissner hypothesis 
is adopted. Due to the initial curvature, there is a coupling between the membrane 
and flexural behaviour at the element level. Special attention is paid to membrane 
and shear locking phenomenon. 

+ DST + CST 

hritial deflection Plate element Membrane element Shell element 

Fi2.2. Construction stapes of the DSTM element 

Reference Configuration Area - Coordinates 

The element is built into a set of axes bound to the element. The x and y axes are 
in the plane of the triangle (Fig.3). 

z 

X 

1(0,0) 2(xz,O) 
Fig.3. Area coordinates and axes of the element 
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The x axis is parallel to the first side. The z axis is perpendicular to the plane of the 
triangle. The area coordinates are defined by the following relations (Fig.3 ) : 

~ = AreaP23 
; L2 = Areap.3 

A A (3) 

Where A is the area of the triangle. The area coordinates L 1 , L2 , L3 are 
dependent: 

(4) 

They can be expressed as a function of the cartesian coordinates as follows: 

L2 and L3 will be chosen as independent variables here in the following relation 
holds: 

l a) ax 1 I YJ 

: ~ 2-Al-x, (6) 

The Membrane Behaviour 

The membrane is the classical Turner's element [12]. The displacements are 
linear and the strains are constant over the triangle : 

(7) 

(8) 

There are six displacement and three strain parameters. 
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Another way of building the element is to calculate the strain Ei of the three sides 
and then to express the strains Ex, Ey , y as a function of Ei (Fig.4): 

where mi and ni are the direction cosines of the edge i. This relationship can be 
inverted. 

(9) 

The two methods give identical results. This is obvious since the strains are constant 
over the triangle. 

y 

3' 

2' 

Fig.4. Strain {a} ofthe three sides 

The Flexural Behaviour 

The flexural element formulation, which is fully described in [7] and [13], is based 
upon a Discrete Strain Theory (DST). The principles of this element will be briefly 
discussed here. 

Some aspects of the theory of isotropic plates with transverse shear 
a) Kinematics 

In the Mindlin/Reissner or shear plate theory the assumption that "normals of the 
mid-surface of the undeformed plate remain straight but not necessarily normal to 
the mid-surface of the deformed plate" leads to the following definition of the 
displacement components u, v, w in the x, y and z Cartesian coordinate system. 

v= zJ\(x,y) 
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where x and y are coordinates of the reference middle surface, z is the coordinate 
through the thickness h : 

h h 
--:=:;; z :=:;;-

2 2 (11) 

w is the transverse displacement. Px and J3y represent the rotations of the normal to 
the x-z and y-z planes, respectively. If we introduce the rotations ex and 9y around 
the x and y axes then : 

(12) 

The bending strains E b and curvatures (X) are given by 

(13) 

with: (14) 

whereas the transverse shear strains are given by: 

(15) 

b) Constitutive equations 
For an isotropic material the in-plane stresses are related to the bending strains by 

{cr} = [DJ{ab} = z[DJ{x} (16) 

with {cr} =(ax crY crxy) (17) 

I l 
11 v 0 I E 

[DJ = (1-v)l v 1 0 I (18) 
1-vl Lo 0 TJ 

E and v are Young's modulus and Poisson's ratio. 
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The bending moments {M} and shear forces {T} are related to the strain resultants 

{x} and {y} by Fig.5. 

{M} = ( Db){x} 

with: {M)= (Mx 

{T} = [ns){y} 

My Mxy) 

[D,] = kGh[I] 

(19) 

(20) 

(21) 

k is the shear correction factor (a value of 5/6 is usually considered for 
homogeneous isotropic plates) and the shear modulus is: 

E 
G = -2(-1 +-v-~ (22) 

c) Equilibrium equations 
The equilibrium equations on the middle surface A are given by: 

where p(x,y) is the distributed load per unit mid-surface acting in the Z direction. 

d) Shear influence factor f 
Equations (10)-(23) for an isotropic plate lead to the following relations: 

I: 1( ) r; 1( ) ---- ---- M +M y xz - D - D Mx,x + M xy,y , y yz - D - D xy,x y,y 
s s s s 

or: 

with: 

w,x+Bx=fx(Bx.By) , w,y+By=.MBx.BJ 

fx = ~ (Bx,xx +vBy,xy + 
1 ~ V ( Bx,JY + By,xy)) 

s 

fy = ~ (By,;y +vBx,xy + 
1 ~V (Bx,xy + By,xx)) 

s 
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and: Ds =k.G.h (27) 

fx and fy which, represent the influence of the transverse shear through the shear 
influence factor <jl,are given by the following equations: 

(28) 

with: (29) 

where L is the characteristic length of plate. 

e) Stain energy 
The strain energy for an element with an of area A is given by 

ue = u; +U: (30) 

u; = !_ f (x)[Db]{X}dA , u: = 
2

1 f (r)[Ds]{y}dA (31) 
2 A' A' 

where <x>, <y>, [Db ], [Ds ] are given by equations (14), (15) and (21), 
respectively. 

The Euler-Lagrange equations associated with the use of the total potential 
energy are the three equilibrium equations (23) expressed in terms of w, Px and f3y· 
A co continuity for w, Px and f3y is required for a fully compatible element. 

For an isotropic material, Equation (31) can be expressed in terms of <jl (29) as 
follows. 

(32) 

This expression depends on the factor <jl-1. The shear locking can occur if the 
displacement w and the independent rotations fields Px and f3y do not satisfy the 
following equations: 
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X 

Z,W 

X 

for cjJ<<l 

Z,W 

Z,W 

y 

l(W,8x,8y) 

Nine D.O.F Trianeular plate bending element 

New normal 

Y,V 

Y-Z Plane 

X,U 

8y=Px 

New normal 

Z-X Plane 

Positive directions of f3x and f3y 

Bending Moments and Shear forces 

Fig.S Flexural behaviour of plate 
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If the equilibrium equations (23) are satisfied explicitly on the continuum, w, Px 
~d Py are related through equations (25). In this case the shear strain energy is 
gtven by: 

u: = ~Ins((w,x+J3J2 +(w,y+J3yr}M (34) 
A 

with equations (25) to (29) 

(35) 

or: u: =~I DJfx
2 + ./Y2 ).dA = ~ <P ~%I (FX2 + FY2 ).dA (36) 

A A 

This shear energy expression depends on the factor 4> and converges to zero if cj>< < 1 
(no shear locking ) 

The formulation of the discrete shear triangle element dst 
The following ideas are kept in mind when looking for a new element : 

1. If the transverse shear effects are negligible compared to the bending effects, 
the element should coincide with DKT, i.e. 

DST ----------> DKT if 4> << 1 

therefore, 

2. The element has 9 D.O.F only. The displacements wand rotations Px and J3 
y of the normal (and Mindlin boundary conditions can be applied): are given by 
the following equation. 

(37) 

with: exi = -J3yi 

3. The formulation of the stiflhess matrix of DST element is such that : 
a) the strain energy is given by equations (30), (31) and (36). 
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(38) 

u; = 
2

1 f (x)[Db]{x}dA , u; = !_ f (F)[Ds){F}dA 
A' 2 A' 

(39) 

(X)= (13x,x 13y,y l3x,y + 13y,x) (40) 

(F)=(FX FY) (41) 

FX(J3x, J3y) and FY(J3x, J3y) are given by equation (26) 

b) Px (x,y) and Py (x,y) are described by co quadratic interpolation functions Fig.6: 

6 6 

l3x = LN;(~ Tt) l3x; • j3y = LN;(~ Tt) j3Y; (42) 
i=l i=l 

Px and Py are the nodal values at the comer l, 2, 3 and mid-nodes 4, 5, 6 (Fig.6), 

Ni(~,TJ) are : 

(43) 

c) a linear variation ofJ3n is imposed along the sides (Fig.7): 

·k = 4,5,6 (44) 

d) equation (35) represents the bending equilibrium equations and the constitutive 
relations are represented as follows: 
(i) at the comer nodes l, 2, 3 : 

(45) 

205 



Mohamed 

3 

5 4 

Fi2.6 Refence element 

k 

Fig. 7 Interpolation of the normal rotation f3n linear 

(ii) at the mid-side points 4, 5, 6 

k = 4,5,6 (46) 

Assuming a cubic Hermite variation ofW(s) along each side (Fig.8): 

(47) 
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Fig.8 Interpolation of the transversal displacement Cubic Hermit variation of 
w. 

along each side ij we have (Fig.9 and Fig.1 0): 

with: 

X 

Fig.9 The angle y between the 
normal to the ij side and X- axis 

y 

5 4 

6 

l(X2,Y2) 

Fig.lO The three normals to the 
three sides 

(48) 

(49) 

X 

twenty-one variables have been introduced (12 J3's and 9 W's) for a total of 12 
relations (equations (44)-(46)). Twelve variables are eliminated : the rotations ofthe 
middle surface W,x and W,y at the comer nodes and the rotations of the normal 13n 
and f3s at the mid-nodes. They are expressed in terms of the final 9 D.O.F W, f3x 
and J3y at the comer nodes (equation (37)). 

f3sk' FX, FY, f3x and f3y ,can be expressed in terms of {U}using the following 
equation[ 11] 
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k=4,5,6 

; FY = (HFY){ U} 
(50) 

The curvatures {X} (equation (14)) are given by: {x} = [Bb]{U} (51) 

J ~ Y3J(Hx.~)+ Y12(Hx.~) l 
with :[Bb(l;,ll}] = 2) -x31 {Hy.~)-x12 {Hy.~) I (52) 

l-x3l(Hx.~)-x12 (Hx.~)+ Y31 \Hy.~)+ Y12 (Hy.~) J 

where 2A = X 31 .y12 - X 12 .y31 , )Hx..; (, )Hx,
77 
(,)Hr . .; (, )Hy,q ( are the erivatives 

of < Hx >and <Hy> (equations (50)) with respect to the area coordinates. 

The shear strains< F > (equation (39)) are given by 

(53) 

with 
[
)HFX(] 

: (BJ= )HFY( (54) 

The stiffhess matrix [K] is the sum of the bending and the shear stiffhess matrices. 

[K] = (Kb] +(Ks] 

[Kbl = 2ArrrBbrrnb][Bb]~drt (55) 
0 0 

with [Bb], [Bs] given by equations (52), (54) and [Db] and [D5] by equations (21). 
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An exact integration of [Kb] is obtained using three Hammer numerical integration 
points. 

Once the nodal variables {U} (equation (37) are known, the bending moment {M} 
can be evaluated at any point by (19), (51): 

(56) 

The constant shear forces Tx and Ty are given by (19), (53) 

(57) 

The in-plane stresses crx, cry and crxy are obtained at any point by (16), (51): 

(58) 

A realistic distribution of transverse shear stresses crxz and cryz is usually obtained 
in Mindlin and Kirchhoff plates by considering the homegeneous stress equilibrium 
equations: 

(59) 

Coupling Between Membrane and Flexural Behaviour 

The present element (DSTM) is not flat. The initial curvature is taken into 
account by Marguerre's theory. It is a shallow shell theory developed in cartesian 
coordinates. It can be shown that such an element converges towards the deep shell 
solution [9]. This is not the case for an element developed in curvilinear coordinates 
with a shallow shell theory [9]. 
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3 

z y 

7. 

X 

Fig.ll The DSTM element 

NUMERICAL EXAMPLES 

A number of commonly used benchmark problem are examined to compare the 
performance the present element with that of other element models in the literature. 
Elements to be included in the comparisons are summarized as follows. 

Name Element Description 

ANS4 Four nodes shell element based on assumed covariant strains [14] 

ANS9 Nine nodes shell element based on assumed covariant strains [14] 

ANST3 Three nodes shell element based on assumed covariant strains [15] 

ANST6 Six nodes shell element based on assumed covariant strains [15] 

ECBl A three nodes deep shell theory [15] 

ECB2 ECB2: A three nodes shallow shell theory [15] 

DKTM DKTM: A three nodes shallow shell element based on marguerre's theory [I] 

Cantilever Beam Under Concentrated Load 

A contilever beam of a rectangular cross-section, is subjected to a concentreted 
load at its free end as shown in Fig.E 1. This problem is proposed to assess the effect 
of the transverse shear introduced discreteley on the structure behaviour. The 
anal:~·tic solution in the direction of the out-of-plane load is : 
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if 
h 
-((J 
L 

=> w ~ 4P(L)3 

Eb h 

E=1.2x106 

v=O 
k=5/6 
1=10 
b=l 
P=O.l 
h variable 

3 2 

4 

Fi2.12. Cantilever beam under concentrated load 

In a first analysis we have examined three cases of this cantilever beam in 
function of the ratio h/1 (h/1=0.01, 0.2, 1). Using the mesh size presented in the 
Fig.12. Results ofthe DSTM element are compared with those DKTM element and 
those of the analytical solution. 

a- The thin plate case h/1=0.01 
The numerical results for this case indicate that the element is free from the shear 

locking phenomena. 

Theoretical solution DKTM DSTM 
0.333 0.31327 0.31329 

b- The moderate plate case 
In the same maner as in the case (a), the cantilever beam is modelled by two 

elements with (DSTM, DKTM, ANST3) elements. The results of the DSTM and 
ANST3 elements are better than the DKTM element, because these elements 
incorporate the effect of the transverse shear. 

DKTM DSTM 
3.915 X 10 4.012 X 10 4 X 10 

c- The thick plate case 
In this case the result of the DKTM element is very poor. while the DSTM result is 
ve ood. 

DKTM DSTM 
3.13 X 10 5.128xl0 
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d- In a second analysis, the same cantilever beam is analysed with the DKTM, 
DSTM and ANST6 elements as a function of the h/1 ratio. Results ofthe different 
elements are presented in the following table. They indicate that the proposed 
element performs well in both thin and thick plate cases. 

1/h 
w 5 4 3 2 1 

DKTM 0.39 0.20 0.84 0.25 0.31 
DSTM 0.40 0.20 0.90 0.29 0.51 
ANST6 0.42 0.22 0.96 0.30 0.53 

Theoretical 0.426 0.221 0.96 0.306 0.533 
solution 

Pinched Cylinder Problem 

The pinched cylinder is a classical problem that has been used extensively to 
check the ability of shell elements to represent the inextensionel bending 
deformation. The open-end cylinder leads to the pure inextentional deformation at 
the limit as tiR approaches zero. An analytic solution for this limiting case is given 
by [16] which is 0.1139. Fig.l3 shows the model geometry. Using symmetry, only 
one eigth of the cylinder was actually analyzed. Normalized transverse 
displacements under the load are given on Fig.14 for different mesh sizes. 
Numerical results for the pinched cylinder with open ends indicate that the proposed 
element exhibits a good accuracy. 

Fig.13. Pinched cylinder with free edges 
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v=0.3125 
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0.12 ~ 
Exact 

0.11 

w 
A 0.1 

48 98 

h=0,094 

148 198 248 298 

Total Number of D.O.F 

0.025 Exact 

0.024 

1023 
h= 0,01548 

w 
0.022 

0.021 

0.02 

48 68 88 108 128 148 

Total Number of D.OF 

--o-ANST3 
-ANS4 
~ANST6 

-+-ANS9 
348 -1Jr- GEOFFROY 

-x-DSTM 
-Exact 

-ANST3 
-ANS4 
-ANST6 
--o--ANS9 
-osTM 
-EXACT 

168 188 

Fig.14. Pinched cylinder problem transverse displacement under the load 
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TRANSVERSE DISPLACEMENT AT NODE A 

Meshes ANST6 ANS9 DSTM 

3x3 0.8288 0.7896 0.8350 

6x3 0.9727 0.9738 0.9587 

7x3 0.9815 0.9937 0.9794 

9x3 0.9825 0.9967 0.9820 

17x3 0.9853 1.000 0.9822 

RADIAL DISPLACEMENT AT NODE B 

Meshes ANST6 ANS9 DSTM 

3x3 0.9367 0.8958 0.8720 

6x3 0.9987 0.9943 0.9800 

7x3 1.000 1.001 0.9940 

9x3 1.000 0.9994 0.9960 

17x3 0.9998 1.001 0.9970 

Infinitely Long Pinched Cylinder 

The infmitely long pinched circular cylinder, presented in Fig.15, is subjected to 
two uniform transverse load lines. We seek to solve this problem to demonstrate the 
influence of the relationships between deformations and displacements on one hand 
and to follow DSTM element behaviour while modeling thick curved structures 
(Rih = I 0 ) on the other hand. The geometrical and mechanical data of this shell are 
presented in figure Fig.15. In the same manner as in [15], we model on the basis of 
symmetry a quarter of a shell strip considering several cuttings (Fig.15). Conditions 
of the imposed limits allow us to get rid of the Y direction influence over the 
deformation of the whole. The uniform load is replaced with concentrated forces. 

The numerical results of normal displacements for A and B nodes, according to 
the total number of degrees of freedom (D.O.F.), are presented on Fig.16. The 
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DSTM results are compared with two exact solutions. One of them is given by 
Donnel (solution based on the shallow shell theory )while the second one, is given by 
Koiter and Sander (solution based on the deep shell theory). The numerical results 
are shown in [15] (The ECA elements, the ECB2 element based on the shallow shell 
theory and the ECB 1 element based on the deep shell theory ) along with elements 
developped in [15]. 

z 

Fig.lS. Infinitely long pinched cylinder 

It is worth noting that: 

y 

E=l05 

R=lO 
h=l 
v=O 

X 

- A rapid monotonous convergence towards the exact solution is obtained for DSTM 
element by the theory of deep shells. 
- DSTM element and ANS elements [15] are composed in the same way. 
- We notice the existence of a jump between the two first mesh sizes and the third 
one. 

This is due to the fact that the shell behaves as shallow one for the two first 
meshes while it shows a deep shell behaviour if the mesh is refined. 
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104 
Exa t 89.7 

Koite.1":.:a:.:..:n=de::.rs:_ ____ JE~~~~~~~~;;;;:rL __ 
89 t ~ I 

74 

59 

50 100 150 200 250 300 350 

Tofal NI.JTberofD.O.F 
Fig. 16. Infiniteley long pinched cylinder 

Normal Displacement at A 

Hemispherical Shell Problem 

---+-- ANST3 

-X-ANSf6 

--ECS1 

-x-DSTM 

-~erE 

400 

A hemispherical shell, which is subjected to self-equilibrating radial point forces 
at 90° intervals, is analyzed via the quarter model shown in Fig.l7. This problem is 
intended to check the element performance for the rigid body rotations and the near 
extensional bending of a doubly curved shell. The geometry and material properties 
are shown in Fig.17. An analytical solution for the problem is given by Flugge [17]. 
The reference solution for the radial displacement at the loaded points is 0.0924. 
One quarter of the hemisphere was actually analyzed using the symmetry of the 
structure. Results for the different mesh sizes are presented in the following 
table. They indicates that the proposed element performs well, while 4-ANS and 
ANST3 elements are locked due to the rigid body straining [15], [18] 
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X 

NODES/SIDES 

5x5 

9x9 

Patch-Test 

z 

h=0.04 
E=6.825x107 

Radius=10 
v=0.3 

y 

F=1 

Fig.17. Hemispherical shell problem 

Radial displacement at the loaded points 

ANST3 ANS4 ANST6 ANS9 

0.01321 0.02834 0.1310 0.6500 

0.04870 0.05698 0.7500 0.9653 

Kirchhoff patch-test 

DSTM 

0.9900 

0.9983 

The popular 1 kirchhoff plate 1 patch test is undertaken (Fig.18). A rectangular 
plate is subjected to the state of bending such that all three moment resultants are 
constant throughout the plate domain. The plate discretization consisting of four 
geometrically distinct DSTM elements yielded exact values for all three constant 
moments in each of the elements. 
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10 
20 

•• 

20 
.... 

Shear patch-test 

I clamped Edge 

E=IOOO 
h=O.l 
v=0.3 

1 

Mohamed 

40 

E=1000 h=1 
v=0.3 
Boundary restraints 
W=O at nodes 1, 2 and 4 

Fig.18. Kirchhoff patch-test 

y 

Narrow strip 

10 f 
20 •• 

Fig.19. Transverse shear patch-test infinitely long cantilevered plate 
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Patch-test, inextensional bending modes 
In order to test membrane locking, we performed the following test ( Fig.E5 ) : 

A rectangular plate, with initial out-of-flatness, is subjected to constant bending, in 

4Hx( x) the first case, the initial out-of-flatness is given by : w 0 = ~ 1- L 

Hxy 
Wo=BL and in the second case : 

We analyse the test with H = 0.1 and 1. The analytical solution, according to 
Marguerre's theory, is given in [ 11]. In all the cases, the error is less than 1% for 
the energy. The maximum membrane stress is equal to 3 % of the flexural stress for 
H = I, and is less than 1 % of the flexural stress for H=O .1. 
It can be seen that the element does not lock. Without special attention being paid to 
membrane locking, results would have been be very poor. 

Spectral And Eigenvalue Analysis Of Stiffness Matrix 

Upon performing a spectral analysis of DSTM's stiffness matrix, six zero 
eigenvalues associated with the requisite rigid body modes are revealed. No spurious 
zero energy modes are present, as one would expect from an exactly integrated 
siffness matrix. Hence, the stiffness matrix is of a correct rank, and the element 
should be regarded as kinematically reliable. 

CONCLUSION 

The improvements realized in the present study include sufficient rank without 
transverse shear locking as well as consistent membrane strain interpolation. It 
permits in extensional bending and adequate representation of curvature effects 
allowing the capture of the important membrane-bending coupling. The obtained 
results confirm the efficiency of this approach (good convergence towards the 
analytical solution) for both deep and shallow shells as well as for thin or thick shell. 
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