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ABSTRACT

In paper [5] it was established the majorant w. But examples of a function f €
Z,, were not constructed. In this paper, in the case of a smooth closed curve, an example
of such a function is constructed.

Historical Approach and Main Results:

The Premeli Privalov theorem [8], [9], [10] is the classical result of the
behaviour of a singular operator in the space of continuous functions.

By Hx we denote the class of functions defined on a pieccewise smooth closed
curve Y’ and satisfying Holder condition with index = .

After that the Premeli Privalov theorem was proved for k—curves 13],16]. [ A
closed rectifiable Jordan curve is called k—curve if there exists a constant
k = 1 such that for any , , € ¥, s (1, 1,) < k I, = ] ]

On the other hand, at 1924, Zygmund A. [14] established the following
relationship between continuity modules of the singular integrals with Hilbert
Kernels and the continuity modulus of the density (in the case of a circle ):

8 7
wys) <c(,f 3 gy +s [ % d3),
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1 _
where g(t) = - _ﬂf"f(}) clg (32;) dy,
and wp(8) = sup [ (T, - F(Ty)




Some properties of class Z,,

In particular from this inequality the Premeli Privalov theorem follows:

Later this estimation was proved [7] for the casc of integrals with smooth
curves Cauchy Kernel.

In {1] Zygmund type results were proved for the case of arbitrary closed
rectifiable Jordan curves in terms of the characteristic metrics < (8), 8(8) of

the curve, where

« (8)= inf |t-T] .5 (0,Lr)
s(t, T)= 3

" where L is the length of the curve ¥",

B(8) = sup s(t, ¥),8€(od= max| T-t|]
lt-t|=<3 T.te ¥

in the form

B(8) w, [ (¥ o< (3
w?(&)sc(of | —-’—-—L(;))] ds + BL:B_‘#ZWL((”” ds)
o1 f(3)-f(t)

where f(t)= — Ir 3 dy +f(t).te Y.

From this inequality, in particular, the Premeli Privalov theorem for the case
of a k—curve follows. In [13] new characteristics of curves were introduced:

© (8) =sup O ,(98)
teY

where ©,0)=mes{T EY, |[t-YI<8},5€ (0d).
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For any arbitrary closed rectifiable Jordan curve the following inequality was

proved in [13]:

wis)y< o J° Wf(,” go(3)+s [ ) 4o (3),

= cz(8,w)

Hence, the Premeli Privalov theorem follows for the curves satisfying © (8 )
~ 8. (i.e. there exists ¢, , ¢, > o such that for any 8 € (0,d],c, 8 <O (8) <
¢, 8. Notice that for all curves © (8) = 8. So we can take ¢; = 1). The class of

these curves is larger than the class of piecewise smooth curves and the class of
k—curves.

In [11] the following inequality of the Zygmund type, was obtained

oy) 32 > 9(3)
5 w yd3+s [ ©(3)
wi(8) < CJ; v f(@(}) A 32

32
w,{ —2 ).
f(e()) 3

Zygmund (or Zygmund type) estimations allow us to study the behaviour of
singular integrals in generalized Hblder spaces:

={f€C | w(3)=0][w(d)]},

where w (8) is a continuity modulus such that w (8) > o,
Lim — w(3) = o,w(8) 1, w(8 +8)<w(3)+w(s)
8—o0 - =

Define a norm in Hy, as follows:

W{‘(S)

Il =11+ sop =2

It is clear that H, is a B—space
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THEOREM 1. [13]: Let ¥ be a curve with ©(8) ~ 8 and let

d W(3¥)
j — d3 < oo.

o

Then the operator Af = 'f’maps H,, into le , it is bounded, and

Z(3w)=0(w,(8)), where w,(8) = faw—g}L ds.
(o}

On the other hand in [2] for the case of a circle ( and in [13] for the case of
curves such that © (8 )~8 and at any point of which the tangent is continuous)
and in [12] an inequality was obtained which is the inverse of Zygmund’s
inequality in some sense. These results gave necessary and sufficient conditions
for the existence of a singular operator from H, to H, . Hence we have shown

the following:
THEOREM 2. ( [2], [13], [12])

Let ¥ be a smooth closed curve. Then the operator Af = 'f."maps H,, into le iff

f"_‘_”_%!)__ d3 <o and Z(w)=O0(w(3)).

o}

In [4,5] the invariance of the class Z,, with respect to the characteristics of

Q was discussed where

5) = sup f(})_f(t) d3 Y= d).
ORI = (0d)
£<3$ ¢

M e Gy w(s) = © (W(5)), 5) = O(W(8)))

We notice that Z, is a B—space with respect to the norm

ifllz, =lfllH,+ SUP Q(3)
Y w(s)
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It is easy to see that Z,, C H,, and for any

rez, . Nl <Ifl,
w

w

Le. the imbedding of Z,, into Hy, is continuous. If

J‘d w(3)

L

then Z,, = H,, their norms are equivalent.

THEOREM 3. ( [4], [5])
Let ¥ be a smooth closed curve,such that

5 {d lx(-gl d3 = © (w(8)),5 € (od].

Then the operator Af = T is a mapping from Zto Z,, and is bounded.

It can be easily seen that the condition of theorem 2 is not weaker than the
condition of theorem 3.

In [5] a majerant w was established for which

j:f' w;” dy = o 5 f"-v%g—)- d3 = O (w(8)),

however, an example of a furction f € Z,, was not constructed.

In this paper, in the case of a smooth closed curve, an example of such a

function is constructed.
Let ¥ be a closed smooth curve and t = t(s), 0 < s < £,

where { is the length of the curve ¥- and the equation of the curve in the arc
coordinate has the form t(s) = x(s) + iy (s).

Putt(o)=1t, and t(-s)=t (£ —s). Without losing generality we

can take £ = 2.
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Consider the function:

‘L% (1-8) ,86 €1 N 7]

w(8) = W L 3E€y o W]
1

i Ln ‘{ ,8€0 ; e

First we prove that the function w ( &) satisfies the following properties:
1) w(d) > o;
.2) w(8) is a non —decreasing function of 3 .

3) Lmw(® )=o0;
d—o0

9 we) |
S

The proof of preperties 1, 2, 3 is easy.

Now we prove the 4th property. Since w (8 ) is constant on [ 1/, t/,], then
it is enough to prove that w(8) | on [o,l/.], by calculating the following
derivative. 8
(ws)y _ v —  1-Ln(/8)
6 T 8°Ln*(1/s)

Now we shall prove that the function w (8 ) satisfies the conditions of thcorem 3.

Consider the expression

¢
s [ _"”_](g-’-dx
A(8) = i

w(8)
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By using L Hospital’s rule, we have.

fm w(3) 44 _w(d)
Lim A (8) = Lim 32 _ Um 82
8—>o0 3-0 w(8) T 5—->0 1-Ln(1/8)
5 52Ln2 (1/3)
_ Lim Ln(1/8)  _ 4
T 30 |In(1/8)-1
Therefore
7
szvﬁ? d3 = O (w(s)).
[

Therefore by theorem 3, the class Z,y is invariant under the considered
singular operator.

Fix the above curve ¥ and consider the following function:

1— Y ,SE'[1;L2,
2 R
s (1-8) . s el=izl
]
f(t(s)) = o 11
T Ln W , S € [——e— ; —e-],
2_(1+9) s €1 - —,
Ln 2 ' i
[ o , s€l1; -5

Now we prove that

sup _ -
Wi3) = loredl <8 [f(t(s)) - f(t(s)) | ~w (3)
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Actualily, it is sufficient to show the last relation for any small 6 . On the

. 1 1 . . .
other hand outside the segment [ — - — ] we consider a function which
e

1 1
satisfies Lipschitz condition on the segment [ - e 'e—] and for

- 1
o<sz—s1<s,<szs—é- we have:

S ~ 8
f(t(s;)) - f(t(sy)) = 1
q 2_.
TlLITl 3
. 1 1
where 3 € [s,,s,], io. ——— 1. Then———— < 1.
Ln_1_. Ln__1_.
3 '3
On the other hand, — | and therefore
3 [
3
1 < 1
I (s,-5)n—",
3 (s, - s)
Hence,
S, - S
0 < f(t(sy)) - f(t(sy)) < —2 ‘1 <1
”~ 1
SLH‘T Ln
For s, < s, — 5, we have:
. 1
0= f(t(sy)) -~ f{t(s;)) sf(t(sy))=— ] =
s
= ! < 11 < c
_18'_
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1
Therefore, for s,, s, € [2, —J]and o <s, — s, <8, we have:
e

lf(t(s,) - fitsn) | < _°_

Ln1_
8

1 .
For s; , 5, € [ -= —]. In the same way, we obtain
e

C

W(d) =
Ln —
)

On the other hand,

wi (8) = sup | F(t(sp)) —f(t(s))] = f(1(8)) - f(t(0)) =

From this we obtain that

w, (8) ~ w(3).
Now we show that f € Z,,.

Let t (s) be any fixed point on the curve ¥~ . Consider the integral:

J f() - ft)
(sE)T(s+E) — v, °F

f(T(Y)) - f(t(s))

= | —— d T(3).
vt (o D)Tisrey T3S

1
Let 8, be any positive number sufficiently small and o < s < §, < 55

Consider the following cases:

) Ife < % then

1
e (3) - F(t(s)) = - =~ —— (3-5)
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. S 3
where s+E€E< T <s-¢€ |.e.?< 'C<?s.
Therefore 3 - s

| £(X(3)) - f(t(s)) | =< c —

sLn—
S

For the integral we have.

f(¥(s)) ~f(t(S) c
t(s)-t(s) NG =—7—

t(s-€)t(s+€)

sbn —
J ldxs) | = S < ¢ __¢ =cw(E).
t(s-€)t(s+€) sint el n L
s € "e
2) lf%sé'ssthen
f -t oy + J
t(s-€)T(s+€) t-t

, 3s = s
‘t(?)t(?) t(s S)t(?)

f(T) - (1)
] ———— d
Jt(s+€g) -t

+ N
t(3s

2

¥ = A1+A2+A3

. - S
A, is estimated as in case 1 with € = > Therefore we get

1

Ln—'
€

|a| <c =cw(E).
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Since on smooth curves, | ¢ —t| < s(t,¥) sk |t-T|

where k = 1 is a constant, we have

'A2|= t(s—g)t(—Z—) f('tt)::(t) dv <
| 1) - f(t) |
EES I

t(s- S
(s £)t(2)

| #() - f(t) | |
<k _Ls D) jdv| <
t(s-&) t(5)

1 1

& [ =) <
s —_ ——— — ——
t(s g)t(z) Ln 3 Ln s
ak( € S)
4K 2
sLnl- t(3"5“(-5—) L A
) 2 sns
< 4‘: < —S— = cw(g)
Ln — Ln —
S €
For the 3t integral A; we have:
1A, =) 3 HT) -1 el <
= t(£+s)——————-——-d <
1(2) T -t
| #(T) - f(t
3 *'L T T( )| ldt| < = cw (€).
s tis+e) St T) Ln —
€
-21-
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Therefore

f(T)-f(t)
J— 't_t
t(s-E)t(s+¢£)

3) If 8, > € > s then

I ﬂtl___.‘z“) dt = J .
t(s-€)t(S+€) -

t(e)t(2s)

L . J () - f(1)

L ] ————dt
t(s-g)t(o) t(2s)t(s+¢g) t-t
=By +B, +Bj.
B| is estimated as in case (2) with € = s. Therefore, we get

1 .
By <c-. <c ! =cw (€).
Ln— Ln

S - 3

Consider now B, + B; =

U)oy
t(s-g)t(o) T(I)-t(s9) (3)

f M dt(})—’
t(2s)t(s+g) . C(3)-t(s)
' dat dt
fJ TR CH g

T(3)-t(s)
t(s-¢g)t(o)

t(2s)t(s+€)

= B; - B}

—-22 _
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where B£'= f(t)r, and

g = (t(o) - t(s)) t(s+€)-t(s)
G- -ts) T Ttz -8

|t(o) - t(s)| iy t(o)-t(s)
wt(s-e)-t(s)] " '¥I ") - ts)

[t(s+E&)-t(s)] . t(s+&)-tis)
t(2s)-t(s)] ¥ T(2s) - t(s)

+ Ln

(o) —t(s) . jt(s+€) - t(s) ]|

= |t($—£)—t(s).|t(23)_t(s)| +i(x< + B)

[t(o) -t(s)]
[t(2s) - t(sjl

Since the curves is smocth, then

ft{s+€)-t(s)
[(s-€)-t(s)]

as s — o and —lass—o0.

Therefore, the logarithmic part in the last equation is bounded when s is small.

In the case of smooth curve we have

* = arg t(o) = t(s) -0 whens — ¢,
t(s-¢g)-t(s)
= t(s+€)-t(s) R
B = arg t(25) =t (5) o whens — o,
-23-
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because o« and B8 are bounded for small s.

Therefore, if we take 8§, sufficiently small, and o < s < §, we find that| 7| <
constant.

Hence,
| Byl = [ f(t(s))|. |7 | = const|f(t))| ==

-

ln —-

=cw(g)

For

(v
|B.| I—J-: T )3)) (S)dt + s+x _ (T (%)) t(3)ds =

- T(I) - t(s)

=1+l

Now, in the integral I, lety = s — 3 and in the integral L,» y = Y -
Then we have:

s ¢ (Y(s-y)
|81 = J; T(s-y) - H(s)

l“ (T (y+s) % (y+s)dy =

T (y+s) - Hs)

T (s-y)dy +

_ (¢, _fXlyts) . f( Tis-y)
B '£ (‘t-(y+s) - 1(s) T (y+s) - T (5-y) - 5)- T (s-y)) dy =
£ - (s~ .
= [ (f(tg:;:)s) _(ti(:) W t6-g)dy+
. J;z ( (T (s:;; - :?s()s)) X (y+s) dy -
- 24 -
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g
f(T (s—y) — f(t(s))
- ¥ (s—
[ T(s-y) - 1©) (&=y) sy +
£ .
_ Lly+s) T (y+9)
+ f(t - h =
(1) ‘£ ( T(y+s) — t(s) Ty-s) - t(s) ) dy
=A+A+A+A,.
€ f(T(y+s) (T (s-y) € 1
lA1|<f( == <k [ Ty - 1
C(y+s) - t(s) s n>_ bnd1_
y+s y-S
If £€< 2s then y
1 1
[Al=< (*Tna_ ~ Tnd dy < 5 s = 1,
: e yr Ln — L
° y+s y—s 3s 3
y <ct_
i
If £ > 2 ; then
2s € 1 1 1
| Al < (-s[: * -!s) Ln 1 T Int dy $C—1
y+s R Ln?
y
, i _ 1
+ _f Ln 1 bn1 dy
23 y+s y—$
y 1
Ln — Ln
1 1 y+s y-s=s
{Ln 1 T tni -
+S y-s Ln — Ln
y y+s y-=s
y+s y+s
ln ¥=5 bn ¥== c
< 3 = C o] 1
Ln ——-. Ln — Ln2 —— 2 —=
2y n n y Ln y

- 925~
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for y €[2s, €]

+S 2s
n 22 a1+ )<

g S 2 .
y—-s y—-s y—-s
Therefore,
i € ay _ i _ ot dy dln :_1_.)
e iy £ y
£
€ 1
1 at “C— LG 1
=C—7 -C 3s t2 Ln-L. t
Lﬂ-l- - £ 2s
e 1
Ln—— A Ln _—
£ . Ln Y la2s
1 1
o 11 - " ) < C—35 =cw(g)
- Ln —
Ln? Ln 2s €

Estimating the integrals Ay and Ag3 similarly, we find that [A] | + A2 + Az ]|
s CW(E&).

For A4 :

£ 1 _ 1 d |—_-
[A ]l < |f(t)] l(t(y+s)—t(s) -c(s—y)—t(s)) y

¢ T (s-y) - T(s+y)
= |i(t)] f

dy
4 (Ey+s)-ts) . (T(s-y)-t(s)

- 26 -
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€
1 1
< | f(t)].2sk? .[ dy =——1——.2sk2(—»—»—)<
s y2 1 S £
Ln—
S
1 i
C———<C———=CW(g)
Ln _.1_ Ln —
s E
This ends the proof.
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