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THRESHOLD MODELLING OF SHIP’S DYNAMICS
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ABSTRACT

In this paper we consider an application of a system called threshold system in the ficld of marine engineering.
Propertics of this system are discussed and the idea of the impulse response function of threshold system is developed.
Non-linear models are suggested for modelling ship’s dynamics. It is shown that these non-linear models provide better
fit and give lower cost than lincar models in designing an optimal controllcr.

do _do
INTRODUCTION I ——+H—=M(Yy),

dt dt
Modern control theory requires a precisce description
of system dynamics by a mathematical model. To pro-
vide a dynamic description of the ship's motion as well
as a proper criterion function of the performance of the
stcering law, two approaches to this problem may be
considered. The first is deterministic and bascd on the
well known first or sccond order differential cquation of
ship’s manouverability. The sccond is statistical and re-

gards ship’s behaviour as a stationary time series.

where 1 and H are parameters of the ship’s rudder, M
(o) = Mg and M ( -y, ) = — My . Through the de-
pendence of y on @ and d@/dt, an appropriate equation
of the following form may be derived (Andronov et al.

(11):

M(y)= M[y(o,dp/dt)]
= My, Z (@ +bdge/dt),

Ship’s systcm has two types of variables [see Fig. where bis a constant and Z (.. ) is defined by

(1)]: Controlled variables (Yawing, rolling, pitching,
etc.) and a control variable (rudder angle). The idea of Z(x) = {
“threshold” is reasonable for such a system. The sim-
plest type of automatic rudder control instruments gives
one of two command signals for the position y, namcly
y =t vy, . The response of the ship’s orientation to y as
measured by the angle @ satisfies (under appropriate
conditions)

+1; x £0

-1;x>0
The object here is to investigate operating conditions un-
der which there is no limit cycle.

Ohtsu et al. {3] represented the actual ship’s course

keeping motion by an autoregressive (AR) model. Ohtsu
et al. [4] described an approach to the optimal con-
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trolling ship’s course keeping motion by an AR model
and they used the identified model to design an optimal
controller (AR autopilot). In this paper we try 10 use
non-linear stochastic modcls called threshold auto-
regressive (TAR) models in the modelling of ship’s dy-
namics.

THRESHOLD SYSTEM

Consider a signle input and a single output system in
which R ( t ) denotes the input, X ( t ) the truc (un-
observable) output, N ( t ) an additive noisc disturbance,
and Y ( t) is the observed ouput. If we assume that the
system is lincar, i.e. the present output is a fixed lincar
combination of present and past inputs for all t, then the
relationships between R (t), X (t), N (t)and Y(1) may
be expressed as (sce; e.g. Priestley [5])

X(l)=°2°c(i) R (t-1i), (2.1a)
i=0

Y(t)=X(t)+N(t), (2.1b)

where the sequence of constants { ¢ (i) } is the impulse
response function of the system,

Suppose now that the systcm is non-lincar and as-

sume that it consists of a finite number of subsystems,
and one and only one subsystem is employed at each in-
stant of time. This system is called threshold system.
Suppose also that there is an indicator variable J ( t) that
indicates which subsystem is to be employed at each in-
stant. J (t) is an intcger valued variable which takes the
values 1, 2, ..., L; for some positive intcger L.

We can represent an open-loop system by a threshold
autorcgressive model of the form

g ,
Y ()=, 0+ b, D R(t—i) + N()U;  22)
i=0

for some integer q; conditionalonJ (t)=j; j=1,2, ...
» L. { N(t) (j) } arc white noise sequences cach with
zero mean and finite variance and cach being in-
dependent of R ('t ). These L scquences are assumed to
be pairwise independent.

Similarly, the closed -loop threshold system is repre-
scnted as

S T -
Y (1)=apP+3 b, IR (1-i) +N(1)Y); (230)
i=0

for some integer qjcondilional onJ; (t) =j; j=12
... Ly, and

. 5 .
R(=c+2d  Ya-iy+e()d;  (23b)
i=0

for some integer S conditional onJy (1) =j; j=1,2
.« Lo . J3 (t) and Jp (1) being the indicator variables
for cach of the two loops and { e (t )3? ) is the white
noise sequence of the seccond loop. This sequence has
similar propertics of { N (t )(j) }.

From the statistical point of view past output contains
some information about present output. Hence, the repre-
sentation (2.2) may be gencralized as

I
Y ()=2g+ Ta;8) v(i-i)
i=1

4
+3 5,9 R @-i) + N @)Y (2.4)
i=0
for some intcgers o and q; - The gencralizations of (2.3)
are respectively

N T
Y(t)=a,+% a9y (i)
i=1

9% :
+3 bR (i) + N @) (2.5a)
i=0
and

T
. J .
R(1)=c+Y ¢, R (i)
i=1

S . .
+3 d; 9y + e (2.5b)
i=0

for some integers Pj» g; -1, 8;» The condition stated for
equations (2.2) and (2.3) still stand completely for equa-
tions (2.4) and (2.5).

Given the input and the output from a real system, if
we want to fit a model of one of the above forms to the
data, the unknown regression parameters can be estimat-
ed by using the well-known least squares method. Orders
of difference equations and some other parameters can
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be estimated by using the Akake’s information critcrion
(sce Sakamoto [6]) which is denoted by AIC. The nor-
malized AIC is NAIC (k) = n! (n in (Residual Var-
iance) + 2k), (2.6)
where n is the sample sizc. The appropriate model is de-
termined by the value of k at which NAIC (k) attains its
minimum value.

After fitting a model to some observations it is im-
portant to test whether the residuals of the model satisfy
the two usual assumptions of independency and normal-
ity. The procedure for testing these two assumptions can
be summarized as follows.

i. If not less than 95% of the autocorrclations of the
residuals of lags 1,2, .., 100 lic within the band
+ 1.96/n"?, then the residuals are accepted as white
noise or uncorrclated.

ii. The Z statistic of Lin and Mudholkar [2] is then used
to test for normality. This statistic is asymptotically
normal with zero mean and unit variance, under the
null hypothesis of normal residuals.

Variable Mcan Variance Range
R(t) 601.9 53155 [72,952]
Y (t) —-28.8 4728 [-372,136]

Bivariate histograms of R (t)and Y (t+i);i=0,1
; are shown in Fig. (2). From this figure we note that

these distributions arc non-Gaussian with multimodes.

Esimates of the regression function of R (t) on
Y (=), ER (t)/Y (t-1) )i =0, 1; are shown in Fig.
(3), while these of Y (t) on R (t-i); 1 = 0, 1; are shown
in Fig. (4). The obvious feature of these figures is the
non - linear shape of these regressions functions. An
analysis of the regression function of these variables
bascd on the bivariate index of lincarity of Thanoon et
al. [7] indicated that there is a delay time between R (t)
and Y (t) of 3 time units.

Noisc Disturbance
( Wind, Wave, ..)

A Manual .
[ > or Stecring
1 Autopilot Gear
Steering

Ship

Yawing , Rolling , Pitching , cic.

Fig 1

SHIP’S SYSTEM

The date of this study is chosen from the Computer
Science Monograph (No. 11, TIMSAC-78) published by
the Institute of Statistica Mathematics, Tokyo, Japan.
The control variable is rudder angle, R (), and the con
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trolled variable is yawing, Y (t). We consider the first
250 data points in the monograph. For this data we have

the following information :
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MODELLING SHIP’S SYSTEM

If we consider ship’s system a lincar system, the fol-

lowing lincar modcl is obtained for the first loop.

Y(t)=-691-0.62Y (t-1) +0.16Y (1-2)
0.5) (.07 (0.08)
+0.02Y (1-3)-0.12 Y (1-4)
(0.08) (0.08)
-0.002Y (-5)+0.18 Y (1-6)+0.04 Y (t-7)
(0.08) (0.08) 0.07)
—004R (1)+0.09R (t-1)
©.05) 0.07)
—0.06R (t-2)+0.08 R(t—3)+0.02R (1-4)
0.07) (0.08) 0.07)
—-008R(t=5)+N (1),
(0.05)

(4.1a)

where the estimated residual variance is Var (N (t) ) =
1308.9 and NAIC = 7.30. The brackcted entrics in (4. la)
are the approximate standard crrors of the extimaicd par-
amaters. For the second loop the following lincar modecl
is identificd.

R(t) = 6417+101R (-1)-0.01 R (1-2)

(64.03) (0.07) (0.10)

-0.06 R (t-3)-0.03R (1-4)

(0.09) (0.06)
-026Y(1)+040Y (1-1)

(0.08) (0.10)
+018 Y (t-2)+e(t),
(4.1b)

(0.09)

where Var (e (t) ) = 1678.4 and NAIC =7.49

We consider now ship’s sysicm as a non-lincar sys-
tem. For the first loop the following indicator variable is
identified by using the NAIC procedure (sce next sec-

tion).

1 if R (t-3) < 400

T (1) =
(0 [ZifR(t—3)>4OO

(4.23)
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~ 1.11Y (t-1) - 0.29Y (t-2) - 0.15R (1)

(0.11) (0.10) (0.09)
+0.10R (t-1) + Ny (1)
(0.10)
ifJj()=1

Y (@)= (4. 3a)

0.47Y (1-1) + 0.26Y (t-2) + 0.08Y (t-3)

(0.09) (0.10) (0.11)

—-0.12Y (t-4) + 0.04 (1-5)

(0.11) 0.11)

+0.38Y (t-6) - 0.05Y (t-7) - 0.02R (1)

(0.10) (0.08) (0.08)

+ 0.09R (-1) - 0.12R (1-2)

0.11) (0.11)

+ 0.04R (1-3) + 0.24R (1-4) — 0.23R (1-5)

0.11) 0.11) (0.08)

+N, () ifJy (=2

where Var (Ny (1)) = 800.3, Var (N, (1)) = 13430, the
pooled residual variance is 1166.6 and NAIC = 7.18.

For the sccond loop, the following indicator variable
is obtaincd

1 if |Y(@3)] £ 19
2 if Y3 > 19
The following TAR model is then obtained

272.7 + 0.54R (1-1) + 0.57R (--2)
(34.81) (0.13) 0.17)

-0.73R (t-3) + 0.41R (t-4)

(0.18) (0.20)

- 0.37R (1-5) + 0.29R (t-6) — 0.13R (=7)
(0.17) (0.19) (0.20)

+ 0.12R (1-8) — 0.13R (t-9)

(0.15) (0.14)

+ 0.06R (t-10) — 0.30Y (1) + 0.04Y (+-1)
(0.09) 0.12) 0.14)
-0.66Y (1-2)-0.37Y (1-3)

(0.55) (0.18)

+0.35Y (t4) - 0.10Y (t-5) + 0.24Y (1-6)
(0.16) (0.19) 0.19)
-0.28Y (t=7) + 0.49Y (1-8)

0.17) (0.15)

+¢y ) if Iy it =1

I,(t)= { (4.2b)

—

R(t)=

(4.3b)
51.42 + 1.09R (t=1) — 0.17R (t=2)

(12.06) (0.07) (0.10)

~0.25Y (1) + 0.53Y (t-1) + &, (1)

0.09)  (0.09)

if Jy()=2

where Var (e (1)) = 547.6 , Var (¢; (1)) = 1662.0, the
pooled residual variance is 1420.5 and NAIC = 7.39.
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Let us now try 1o test the residuals of the above mod-
els. Table 1 shows the residual variance and the NAIC
valucs of each model. The fourth column gives the per-
centage of autocorrclations of residuals which lie inside
the band + 1.96 n™2. The last column shows the valuc of
the Z-statistic for testing the normality of these residuals.
From this table we conclude that the residuals of all
thesc models can be accepted as Guassian white noise. It
is also clear from the residual variance as well as the
NAIC values that the TAR modcls provide better fit than
the corresponding lincar models.

THE IMPULSE RESPONSE FUNCTION

Let us consider ship’s systcm as a single input and a
single output system in which R (t) denotes the input, X
(t) the true (unobservable) output, N (1) an additive noise
disturbance, and Y (t) is the observed output. The re-
lationship between these variables may be expressed as

X(t)y=g R®,R(-1),..) (5.1a)
Y (1) =X (D+N(@), (5.1b)

where g (.) is an unknown function. If we assume that g
(.} is lincar and time invariant, we can rewrite (5.1a) as

X (1) =_°Z°0c(i) R (L), (5.2)
1=

Table 1
A Comparison between the Fitted Models

Residual Whitencss o
Modcl Variance NAIC Test (% ) Z - Statistic
(4.1a) | 13089 | 7.30 98 0.90
(4.1b) | 16784 | 7.49 95 1.37
(43a) | 1166.6 | 7.18 99 1.94
(43b) ] 14205 | 7.39 96 0.69

where the sequence of constants { ¢ (i) } is the impulse
response function.

We defined in scction 2 threshold system to be that
system which consists of a finite number of subsystems,
and one and only one subsystel is employed at each in-
stant of time. Also, we defined J () to be an indicator
variable which indicates which subsystem is employcd
at time t. Typically, J (t) is defined in terms of past input
R (t-d), for some positive integer d. Then for simplicity
of discussion we consider the following simple TAR
model after ignoring the intercept and the noise term
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Regression Function of Y (t) on R (t-1) for Raw Data.

Y(©=a0OY@1)+bTONIR @) (5.3)

To obtain an expression for the output as a function of
present and past input, we neced to expand Y (t-1) in the
right hand side of (5.3) infinite number of times. Now, if
(5.3) is a lincar model. i.e. J (1) = m, a constant for all 1.
Then if | alm) | < 1, there is a unique set of cocfficients of
R (1), R (t-1) such that we can write (5.3) as

Y ()= °z° Cmi) R (t-i), (5.4)

i=0
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where CM (i) = p{m a™' | Now consider the case
when J (t) is not a constant. Since J (t) depends on
R (1-d) and a¥ ®, b O dcpend on J (v), it is clear that
the invertibility of (5.3) lcads to infinite number of sets

of cocfficicnts of R (t), R (t-1), .... : where each sct de- -

pends on present and past valucs of the indicator var-
iable J (1). i.e.

Y (1) = bd® R () + 2O I R (t-1)

+ al0Op 0D TE2) R (1-2) + ..,

or
YO =3CIDGER (1), (5.52)
i=0
where i
1
CIMi=a@O[[pCED 512, (5.5b)

j=1

and {C T O (i) } is the impulse response function of
this threshold systcm. Note that for C9 ® (i) (o con-
verge, we need to assume that | b () | < 1 for all j =
1,2,..., L. This form of the impulse response function of
treshold system is intercsting because it covers all pos-
sibilities of behaviour of the L subsystems in present and
past.

Let us now apply the above idcas on the fitted mod-
els in the last section, After inverting the lincar model
(4. la) we get

Y ({®)=-508+ °§ C, (i) R (t-), (5.6)
i=0

1=

where the plot of the impulse response function {C; (i)}
is shown in Fig. (5). Inverling the linear modcl (4.1b)
gives

R (1) =706.0 + § C, (1) Y (t-i), (5.7)
i=0

Let us now consider the TAR model (4.3a). As we
have mentioned before there is an infinite number of sets
of cocfficients of R (1), R (-1),... depending on the val-
ues of J; (1), J; (t-1),... . We consider here two spccial
cases :

O I, @©)=7J, t-1) = ... = 1 (i.c. always rudder an-
gle does not exceed 400), then

Y@= § CM () R (t-i), (5.82)

1=

where { C™ (i) } is shown in Fig. (7a).
() IfJ; (1 =J, (1-1) = .. = 2 (i.e. always rudder angle
excecds 400), then

Y ()= °2° C@ (i) R (1), (5.8b)

i=0
where {C?) (i)} is shown in Fig. (7b).

Similarly we consider two cases for the TAR model
(4.3b) :
NI O=],t-1)=..=1, we have

R(1)=7.8x10%+ ozo C® ) Y(t-1), (5.9a)
i=0

(i) IfJ, (=7, (1-1)= ... = 2, we have

R (1) = 700.6 + °§ C® @) Y (i), (5.9b)

i=0

where {C® (i)} , {C® (i)} arc shown in Fig. (8). Note
that [C(B) (1)} is divergent because some of the roots of
the characleristic equation Z!° — 0547° - 05728 +
0.73Z" —041Z% + 037Z° - 0.29z* + 0.132° - 0.1222
+0.13Z - 0.06 = 0 lic outside the unit circle.

MINIMUM VARIANCE CONTROL

Suppose we wish to construct a feedback controller to
compensale for the disturbance N (t) so that the output Y
(t) follows, as far as possible, some predetermined form.
Without loss of gencrality we may take the original pre-
dctermined form to be zcro, for all t, (which is then
called the “set point”) and the problem now is to design
a controller which, for each t, computes R(t) as a func-
tion F (.) of zero. The optimal form of F (. ) is then de-
termined by minimizing some “cost function” V which
measurcs the cost of deviations of Y (t) from its set point
zero. In minimum variance control we choose as our cost
function the expected value of Y? (t+d). i.e.

V=E [ Y2 (1+d)], (6.1)
where d is the delay time between input and output.
Then we choose F (. ) to minimize this form of V. It can
be shown that, sce e.g. Priestley {5], the optimal choice
of the input R (t) is that for which the true output

X (1) satisfies

A
X ({t+d)=-N(t+d), 6.2)
A
where N (t+d) is the d-step-ahead predictor of N (t+d).
From (5.1b), (6.1) and (6.2) we get
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V=E[{N@+d)-N +d) }]?
or

V = mean square crror (m.s.c.) of the d-step-predictor of
N (t+d).

(6.3)

Ohtsu et al. [4] used an identificd AR model to de-
sign an optimal controller. Here we have no actual ship
to design such controller. What we have to do is to con-
sider the sample m.s.c. as our cost function.

Table II gives the sample m.s.e. of h-step-ahead pre-
dictors from the fitted modcls for rudder and yawing for
the last 70 data point, h = 1,2,3. From the table we note

A
C( )(i)

a,

@.28

©
SRR
a

P Y o ¥V 2 §

6.16 H

»
Dy
)
[x\3
()
X

-0. 190 |

-@,
-g.15
-a@.
-8.
-a.

o
09
o)
m
&

@D

W fa T

Fig. (8a) Impulsc Response Function of (4.3b) when
L=],E=..=1

CONCLUSION AND DISCUSSION

The idea of threshold system scems to be reasonable
in applications. We gave the indicator proccess of thresh-
old system some physical mcaning where rudder angle
was classified in to two stales with respect to ship’s mo-
tion: one when there is no correction to yawing angle
and the other when there is.

The fitted threshold models characiterize by good sta-
tistical and fitted threshold models have no limit cycles.
In fact the threshold model for yawing (4.3a) gives a

that TAR models give lower cost function than lincar

AR models.
Table [1
m.s.c. of h-step-ahead predictors
Model § ! 2 3
(4.1a) 113906 17609 95543
(4.1b) 2841 8724 17556
(4.3a) 2303 6084 11063
(4.3b) 2771 8742 17161
1PaeE0
200060 1
compe |
40z00
zooe0 |
)
P gl 29 40 1] =1c] @
—4GBER0
-Eaaaa
-5e6e0 | °
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Fig. (8b) Impulsc Response Function of (4.3b) when
L=, -)=..=2

limit point of zcro, while the threshold model for rudder
angle (4.3b) gives a limit point of 352.2.

In order to compare the lincar system, which consists
of equations (4.1a) and (4.1b), with threshold system,
which consists of equations (4.3a) and (4.3b), simulation
bascd on 6000 data points of these systems was carried
out. Figs. (9), (10) show the obtaincd bivariate dis-
tributions from these systems, while Figs. (11) to (14)
show the estimated regression functions from close to
these of the real data, shown in Fig. (2) to (4), than these
from lincar systcm.
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