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ABSTRACf 

In this paper we consider an application of a system called threshold system in the field of marine engineering. 

Properties of this system arc discussed and the idea of the impulse response function of threshold system is developed. 
Non-linear models arc suggested for modelling ship's dynamics. It is shown that these non-linear models provide better 

fit and give lower cost than linear models in designing an optimal controller. 

INTRODUCTION 

Modern control theory requires a precise description 
of system dynamics by a mathematical model. To pro­

vide a dynamic description of the ship's motion as well 
as a proper criterion function of the performance of the 
steering law, two approaches to this problem may be 
considered. The first is deterministic and based on the 
well known first or second order differential equation of 
ship's manouverability. The second is statistical and re­

gards ship's behaviour as a stationary time series. 

Ship's system has two types of variables [see Fig. 

(1)]: Controlled variables (Yawing, rolling, pitching, 
etc.) and a control variable (rudder angle). The idea of 
"threshold" is reasonable for such a system. The sim­

plest type of automatic rudder control instruments gives 
one of two command signals for the position 'Jf, namely 
\jf = ± \j/0 • The response of the ship's orientation to 'Jf as 

measured by the angle 0 satisfies (under appropriate 
conditions) 
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d2<p d<p 
I - 2- + H - = M ( 'Jf ), 

dt dt 

where I and H are parameters of the ship's rudder, M 
(\j/0 ) = M0 and M ( - \j/0 ) = - Mo . Through the de­
pendence of \jf on 0 and d0/dt, an appropriate equation 
of the following form may be derived (Andronov et al. 

[ll): 

M ( 'Jf ) = M [ 'Jf ( <p , d<p/dt ) ] 
= M0 Z ( <p + b d<p/dt ), 

where b is a constant and Z ( . ) is defined by 

{ +l;x~O Z (X) = 
-l;x>O 

The object here is to investigate operating conditions un­
der which there is no limit cycle. 

Ohtsu et al. [3] represented the actual ship's course 
keeping motion by an autoregressive (AR) model. Ohtsu 
et al. [4] described an approach to the optimal con-
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trolling ship's course keeping motion by an AR model 

and they used the identified model to design an optimal 

controller (AR autopilot). In this paper we try to usc 

non-linear stochastic models called threshold auto­

regressive (TAR) models in the modelling of ship's dy­

namics. 

THRESHOLD SYSTEM 

Consider a signlc input and a single output system in 

which R ( t ) denotes the input, X ( t ) the true (un­

observable) output, N ( t) an additive noise disturbance, 

and Y ( t ) is the observed ouput. If we assume that the 

system is linear, i.e. the present output is a fixed linear 

combination of present and past inputs for all t, then the 

relationships between R ( t ), X ( t ), N ( t) and Y(t) may 

be expressed as (sec; e.g. Priestley [ 5 ] ) 

00 

X(t) = L c (i) R (t-i), 
i=O 

Y(t)=X(t)+N(t). 

(2.1a) 

(2.1 b) 

where the sequence of constants { c ( i ) ] is the impulse 

response function of the system. 

Suppose now that the system is non-linear and as­

sume that it consists of a finite number of subsystems, 

and one and only one subsystem is employed at each in­

stant of time. This system is called threshold system. 

Suppose also that there is an indicator variable J ( t ) that 

indicates which subsystem is to be employed at each in­

stant. J ( t ) is an integer valued variable which takes the 

values 1, 2, ... , L; for some positive integer L. 

We can represent an open-loop system by a threshold 
autoregressive model of the form 

Y(t)=ao(j)+~ bi(j) R(t-i) + N(t)(j); 
i=O 

(2.2) 

for some integer q j conditional on J ( t ) = j ; j = 1, 2, ... 

, L. { N ( t ) ( j ) } arc white noise sequences each with 

zero mean and finite variance and each being in­

dependent of R ( t ). These L sequences arc assumed to 

be pairwise independent. 
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Similarly, the closed -loop threshold system is repre­
sented as 

Y(t)=ao(j)+tj bi(j)R(t-i) +N(t)(j);(2.3a) 
i=O 

for some integer q j conditional on J1 ( t) = j; j = 1, 2 

. .. , L1 , and 

R ( t) = c0 (j > + ~ di (j) Y (t -i) + e ( t) (j > ; 

i = 0 
(2.3b) 

for some integer sj condi tiona! on J2 ( t ) = j ; j = 1, 2 

... , ~ . J 1 ( t ) and J2 ( t ) being the indicator variables 
for each of the two loops and { e ( t )( j ) } is the white 

noise sequence of the second loop. This sequence has 
similar properties of { N ( t )( j) } . 

From the statistical point of view past output contains 

some information about present output. Hence, the repre­
sentation (2.2) may be generalized as 

P· 
Y(t)=a0(j)+ Iai(j) Y(t-i) 

i = 1 
q· +I b/j) R (t-i) + N (t)(j) 

i=O 
(2.4) 

for some integers Pj and% . The generalizations of (2.3) 
are respectively 

P· 
Y(t)=a

0
(j)+I ai(j)Y(t-i) 

i = 1 
q· 

+I b/j) R (t-i) + N (t)(j) (2.5a) 
i = 0 

and 
r­

R(t)=co(j)+I ci(j)R(t-i) 
i = 1 

S· 

+I d i (j) Y (t-i) + e (t) (j) 
i=O 

(2.5b) 

for some integers Pj , qj , rj , sj , The condition stated for 

equations (2.2) and (2.3) still stand completely for equa­

tions (2.4) and (2.5). 

Given the input and the output from a real system, if 
we want to fit a model of one of the above forms to the 

data, the unknown regression parameters can be estimat­
ed by using the well-known least squares method. Orders 
of difference equations and some other parameters can 
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be estimated by using the Akakc's information criterion 
(see Sakamoto [6]) which is denoted by AIC. The nor­
malized AIC is NAIC (k) = n-1 (n in (Residual Var­
iance)+ 2 k ), (2.6) 

where n is the sample size. The appropriate model is de­
termined by the value of k at which NAIC (k) attains its 
minimum value. 

After fitting a model to some observations it is im­
portant to test whether the residuals of the model satisfy 
the two usual assumptions of independency and normal­
ity. The procedure for testing these two assumptions can 
be summarized as follows. 

i. If not less than 95% of the autocorrelations of the 
residuals of lags 1 ,2, ... , 100 lie within the band 

± 1.96/n112
, then the residuals arc accepted as white 

noise or uncorrelatcd. 

ii. The Z statistic of Lin and Mudholkar [2] is then used 
to test for normality. This statistic is asymptotically 
normal with zero mean and unit variance, under the 
null hypothesis of normal residuals. 

Manual 

~ or Steering 

Autopilot Gear 

Steering 

Variable Mean Variance Range 

R ( t) 601.9 53155 [72,952] 
y ( t) -28.8 4728 [- 372,136] 

Bivariate histograms of R ( t ) and Y ( t ± i ) ; i = 0 , 1 

; arc shown in Fig. (2). From this figure we note that 

these distributions arc non-Gaussian with multimodcs. 

Esimates of the regression function of R ( t) on 

Y (t-i), E (R ( t) I Y (t-i) ) i = 0, 1; are shown in Fig. 

(3), while these of Y ( t) on R (t-i); i = 0, 1; are shown 

in Fig. (4). The obvious feature of these figures is the 

non - linear shape of these regressions functions. An 

analysis of the regression function of these variables 

based on the bivariate index of linearity of Thanoon et 

al. [7] indicated that there is a delay time between R (t) 

andY (t) of 3 time units. 

_ _, Ship 

Noise Disturbance 
(Wind, Wave, .. ) 

~ 

Yawing , Rolling , Pitching , etc. 

Fig 1 
SillP'S SYSTEM 

The date of this study is chosen from the Computer 
Science Monograph (No. 11, TIMSAC-78) published by 
the Institute of Statistica Mathematics, Tokyo, Japan. 
The control variable is rudder angle, R (t), and the con 
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trolled variable is yawing, Y (t). We consider the first 

250 data points in the monograph. For this data we have 

the following information : 
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Y (t+l) "R (t) Y (t) 1\ R (t) 

Y (t-1) 1\ R (t) 

Fig. 2 

Bivariate Histograms of R (t) and Y (!±I) for Raw Data 

E[R(tj Y(t-1)] 
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Fig. 3 

Regression Function of R(t) on Y (t-1) for Raw Data. 
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MODELLING SHIP'S SYSTEM 

If we consider ship's system a linear system, the fol­

lowing linear model is obtained for the first loop. 

Y ( t) =- 6.91-0.62 Y (t-1) + 0.16Y (t-2) 

(0.5) (0.07) (0.08) 

+ 0.02 Y (t-3)- 0. I 2 Y (t-4) 

(0.08) (0.08) 

-0.002 y (t-5) + O.I8 y (t- 6) + 0.04 y (t-7) 

(0.08) (0.08) (0.07) 

-0.04 R ( t) + 0.09 R (t-1) 

(0.05) (0.07) 

-0.06 R (t-2) + 0.08 R (t- 3) + 0.02 R (t-4) 

(0.07) (0.08) (0.07) 

- 0.08 R (t-5) + N ( t ) , 

(0.05) 

(4. Ia) 

where the estimated residual variance is Var (N ( t ) ) = 
1308.9 and NAIC = 7.30. The bracketed entries in (4. Ia) 

are the approximate standard errors of the extimated par­

amaters. For the second loop the following linear model 

is identified. 

R ( t) = 64.17 + l.OI R (t-1)- 0.01 R (t-2) 

(64.03) (0.07) (0. IO) 

-0.06 R (t-3)- 0.03 R (t-4) 

(0.09) (0.06) 

-0.26 y ( t) + 0.40 y (t -I) 

(0.08) (0.1 0) 

+ 0.18 Y (t-2) + e ( t ) , 

(4.1b) 

(0.09) 

where Var (e ( t)) = 1678.4 and NAIC = 7.49 

We consider now ship's system as a non-linear sys­

tem. For the first loop the following indicator variable is 

identified by using the NAIC procedure (sec next sec­

tion). 

{ 
1 if R (t-3) :::;; 400 

Jl ( t) = 
2 if R (t-3) > 400 

(4.2a) 
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I.I I Y (t-1)- 0.29Y (t-2)- 0.15R (t) 
(0.1 I) (0. I 0) (0.09) 
+ O.IOR (t-1) + N1 (t) 

(O.IO) 
ifJl (t) = 1 

Y (t) = (4. 3a) 
0.47Y (t-1) + 0.26Y (t-2) + 0.08Y (t-3) 
(0.09) (0.1 0) (0.11) 
- 0. I 2Y (t-4) + 0.04 (t-5) 
(0. I I) (0.11) 
+ 0.38Y (t-6)- 0.05Y (t-7)- 0.02R (t) 
(0. 10) (0.08) (0.08) 
+ 0.09R (t-1)- O.I2R (t-2) 
(O.I I) (O.I I) 
+ 0.04R (t-3) + 0.24R (t-4)- 0.23R (t-5) 
(O.II) (0.I1) (0.08) 
+ N2 (t) ifJ1 (t) = 2 

where Var (N 1 (l)) = 800.3, Var (N2 (t)) = 1343.0 , the 
pooled residual variance is 1 I66.6 and NAIC = 7.18. 

For the second loop, the following indicator variable 

is obtained 

{ 
1 if I Y (t-3) I :::;; 19 

J2 ( t) = 
2 if IY(t-3)1 > I9 

The following TAR model is then obtained 

272.7 + 0.54R (t-1) + 0.57R (t-2) 
(34.81) (0.13) (0.17) 
- 0.73R (t-3) + 0.41R (t-4) 
(0. I 8) (0.20) 

(4.2b) 

- 0.37R (t-5) + 0.29R (t-6)- O.I3R (t-7) 
(0.17) (0. I 9) (0.20) 
+ 0. I 2R (t-8)- 0.13R (t-9) 
(0.15) (0.14) 
+ 0.06R (t-10)- 0.30Y (t) + 0.04Y (t-1) 
(0.09) (O.I2) (0.14) 

R ( t) = - 0.66Y (t-2)- 0.37Y (t-3) 
(0.55) (0.18) 
+ 0.35Y (t-4)- O.IOY (t-5) + 0.24Y (t-6) 
(0.16) (0.19) (0.19) 
- 0.28Y (t-7) + 0.49Y (t-8) 
(0.17) (0.15) 
+ e1 (t) if J2 (t) = 1 

(4.3b) 
51.42 + 1.09R (t-1)- 0.17R (t-2) 
(I 2.06) (0.07) (0. 10) 

- 0.25Y (t) + 0.53Y (t-1) + e2 (t) 
(0.09) (0.09) 

if J2 (t) = 2 

where Var (c1 (t)) = 547.6 , Var (~ (t)) = 1662.0, the 
pooled residual variance is 1420.5 and NAIC = 7.39. 
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Let us now try to test the residuals of the above mod­

els. Table I shows the residual variance and the NAIC 
values of each model. The fourth column gives the per­
centage of autocorrelations of residuals which lie inside 

the band± 1.96 n1
\2. The last column shows the value of 

the Z-statistic for testing the normality of these residuals. 
From this table we conclude that the residuals of all 

these models can be accepted as Guassian white noise. It 
is also clear from the residual variance as well as the 

NAIC values that the TAR models provide better fit than 
the corresponding linear models. 

THE IMPULSE RESPONSE FUNCTION 

Let us consider ship's system as a single input and a 
single output system in which R (t) denotes the input, X 

(t) the true (unobservable) output, N (t) an additive noise 
disturbance, and Y (t) is the observed output. The re­

lationship between these variables may be expressed as 

X (t) = g (R(t),R(t-1), ... ) 

Y ( t ) = X (t) + N (t), 
(5.la) 

(5.1b) 

where g (.) is an unknown function. If we assume that g 

(.)is linear and time invariant, we can rewrite (5.la) as 

00 

X (t) = I c ( i ) R (t -i), 
i = 0 

Table I 

(5.2) 

A Comparison between the Fitted Models 

Residual Whiteness 
Model Variance NAIC Test (%) Z- Statistic 

( 4.la) 1308.9 7.30 98 0.90 
(4.lb) 1678.4 7.49 95 1.37 
( 4.3a) 1166.6 7.18 99 1.94 
( 4.3b) 1420.5 7.39 96 0.69 

where the sequence of constants ( c ( i ) } is the impulse 
response function. 

We defined in section 2 threshold system to be that 
system which consists of a finite number of subsystems, 

and one and only one subsystcl is employed at each in­
stant of time. Also, we defined J (t) to be an indicator 

variable which indicates which subsystem is employed 

at timet. Typically, J (t) is defined in terms of past input 
R (t-<1), for some positive integer d. Then for simplicity 
of discussion we consider the following simple TAR 

model after ignoring the intercept and the noise term 
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Fig. 4 

Regression Function of Y (t) on R ( t - 1 ) for Raw Data. 

Y (t) =a (J(t)) Y (t-1) + b (J(t)) R (t). (5.3) 

To obtain an expression for the output as a function of 
present and past input, we need to expand Y (t-1) in the 
right hand side of (5.3) infinite number of times. Now, if 

(5.3) is a linear model. i.e. J (t) = m, a constant for all t. 
Then if I a(m) I< I, there is a unique set of coefficients of 
R (t), R (t-1) such that we can write (5.3) as 

00 

Y (t) = I cCm)(i) R (t-i), (5.4) 
i=O 
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where c<m) (i) = b(m) a<m)i . Now consider the case 

when J (t) is not a constant. Since J (t) depends on 
R (t--d) and a<I <t)), b(J (t)), depend on J (t), it is clear that 

the invcrtibility of (5.3) leads to infinite number of sets 

of coefficients of R (t), R (t-1), .... : where each set de- . 

pends on present and past values of the indicator var­

iable J (t). i.e. 

Y ( t) = b(J (t)) R (t) + a1 (t)) b (J (t-l)) R (t-1) 

+ a (J (t)) b (J (t-l)) b (J (t-Z)) R (t-2) + ... 

or 
00 

Y (t) = I C 0 (t)) (i) R (t-i), 
i=O 

where 
i 

C (J (t)) (i) = a (J (t)) f1 b (J (t-j)) ; i = I ,2, ... 
j= I 

(5.5a) 

(5.5b) 

and { C (J (t)) (i) } is the impulse response function of 

this threshold system. Note that for cO (t)) (i) to con­

verge, we need to assume that I b (j) I < 1 for all j = 

1,2, ... , L. This form of the impulse response function of 

trcshold system is interesting because it covers all pos­

sibilities of behaviour of the L subsystems in present and 

past. 

Let us now apply the above ideas on the fitted mod­

els in the last section. After inverting the linear model 

(4. Ia) we get 

00 

Y (t) =- 5.08 + I c 1 (i) R Ct-i), 
i =0 

(5.6) 

where the plot of the impulse response function { cl (i)} 

is shown in Fig. (5). Inverting the linear model (4.1 b) 

gives 

00 

R (t) = 706.0 + I C2 (i) Y (t-i), (5.7) 
i=O 

Let us now consider the TAR model (4.3a). As we 

have mentioned before there is an infinite number of sets 

of coefficients of R (t), R (t-1), ... depending on the val­

ues of J1 (t), J1 (t-1), .... We consider here two special 

cases: 

(i) If J 1 (t) = J 1 (t-1) = ... = 1 (i.e. always rudder an­

gle docs not exceed 400), then 

00 

Y (t) = I c<1) (i) R (t-i), (5.8a) 
i=O 
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where { C(l) (i) } is shown in Fig. (7a). 

(ii) If J1 (t) = J1 (t-1) = .. = 2 (i.e. always rudder angle 

exceeds 400), then 

00 

Y (t) = I c<2) (i) R (t-i), 
i=O 

where ( C(2) (i)} is shown in Fig. (7b). 

(5.8b) 

Similarly we consider two cases for the TAR model 

(4.3b): 

(i) If J2 (t) = J2 (t- 1) = ... = 1, we have 

00 

R (t) = 7.8 X I 036 + I c(3) (i) Y(t-i), (5.9a) 
i=O 

(ii) If J2 (t) = J2 (t-1) = ... = 2, we have 

R (t) = 700.6 + I c<4
) (i) Y (t-i), (5.9b) 

i=O 

where { C(3) (i)} , { c<4
) (i)} arc shown in Fig. (8). Note 

that { c<3
) (i)} is divergent because some of the roots of 

the characteristic equation Z10 
- 0.54Z9 

- 0.57Z8 + 
0.73Z7

- 0.41Z6 + 0.37Z5 
- 0.29Z4 + 0.13Z3

- 0.12Z2 

+ 0.13Z- 0.06 = 0 lie outside the unit circle. 

MINIMUM VARIANCE CONTROL 

Suppose we wish to construct a feedback controller to 

compensate for the disturbance N (t) so that the output Y 

(t) follows, as far as possible, some predetermined form. 

Without loss of generality we may take the original pre­

determined form to be zero, for all t, (which is then 

called the "set point") and the problem now is to design 

a controller which, for each t, computes R(t) as a func­

tion F (.)of zero. The optimal form ofF ( . ) is then de­

termined by minimizing some "cost function" V which 

measures the cost of deviations of Y (t) from its set point 

zero. In minimum variance control we choose as our cost 

function the expected value of Y2 (t+d). i.e. 

V = E [ Y2 (t+d)], (6.1) 

where d is the delay time between input and output. 
Then we choose F (.)to minimize this form of V. It can 

be shown that, sec e.g. Priestley [5], the optimal choice 

of the input R (t) is that for which the true output 

X (t) satisfies 
A 

X (t + d) = - N (t + d), (6.2) 
A 

where N (t+d) is the d-step-ahead predictor of N (t+d). 

From (5.1b), (6.1) and (6.2) we get 
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0.20 

0.15 

0.10 

-0.05 

-0.10 

-0.15 

Fig. (5) : Impulse Response Function of ( 4.1 a) 

( 1 ) 
( (i) 

-0.04 

-0.08 

-0.10 

-0.12 

-0.14 

-0.16 

Fig. (7a) Impulse Response Function of (4.3a) when 

J 1 (l) = J 1 (t-1) = .... = 1 

0 20 40 6(1 :::0 100 
-0. 1 

-0 2 

-0.3 

Fig. (6) : Impulse Response Function of (4.1b) 

0.25 

0.20 

0.15 

(1. 10 

0.05 

-0.1€1 

-€1.15 

Fig. (7b) Impulse Response Function of (4.3a) when 

J1 (t) = J1 (t-1) = .... = 2 

274 



B. Y. Tlli\NOON 

v = E [ { N (t+d)- N (t+d) }]2 (6.3) 

or 

V = mean square error (m.s.e.) of the d-step-predictor of 

N (t+d). 

Ohtsu et al. [4] used an identified AR model to de­

sign an optimal controller. Here we have no actual ship 

to design such controller. What we have to do is to con­

sider the sample m.s.e. as our cost function. 

Table IT gives the sample m.s.e. of h-step-ahead pre­

dictors from the fitted models for rudder and yawing for 

the last 70 data point, h = 1 ,2,3. From the table we note 

e.@&~----~~~e.--------------~--
_0. os? 20 40 60 80 100 

-0.10 
-0.15 
-0.20 
-8.25 
-0.30 

Fig. (8a) Impulse Response Function of (4.3b) when 

J2 (t) = J2 (t-1) = .... = 1 

CONCLUSION AND DISCUSSION 

The idea of threshold system seems to be reasonable 

in applications. We gave the indicator process of thresh­
old system some physical meaning where rudder angle 

was classified in to two states with respect to ship's mo­

tion: one when there is no correction to yawing angle 

and the other when there is. 

The fitted threshold models characterize by good sta­

tistical and fitted threshold models have no limit cycles. 

In fact the threshold model for yawing (4.3a) gives a 

that TAR models give lower cost function than linear 

AR models. 

Table il 
m.s.e. of h-step-ahead predictors 

~ I 2 3 

( 4.1a ) 113906 17609 95543 

( 4.1b) 2841 8724 17556 

( 4.3a) 2303 6084 11063 

( 4.3b) 2777 8742 17161 

100000 

::::oooo 
60000 

4(1(1(10 

20000 

0 
20 40 60 

-4(1000 

-60000 

-80000 
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Fig. (8b) Impulse Response Function of (4.3b) when 

J2 (t) = J2 (t-1) = .... = 2 

limit point of zero, while the threshold model for rudder 

angle (4.3b) gives a limit point of 352.2. 

In order to compare the linear system, which consists 
of equations (4.1a) and (4.1b), with threshold system, 

which consists of equations (4.3a) and (4.3b), simulation 

based on 6000 data points of these systems was carried 

out. Figs. (9), (1 0) show the obtained bivariate dis­

tributions from these systems, while Figs. (11) to (14) 

show the estimated regression functions from close to 

these of the real data, showrt in Fig. (2) to ( 4 ), than these 

from linear system. 
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Fig. (9) : Bivariare Histograms of R (t) and Y (t ± i) from 

Linear System 
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U = Y(t-1) 
V= Rltl 

u------- v 

Fig. (10) :Bivariate Histograms of R (t) andY (t ± i) 
from Threshold System 
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Fig. ( 12) : Regression Function of Y (t) on R (t- i) for 

Linear System 
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Fig. (13) :Regression Function of R (t) on Y (t- i) for 

Threshold System 
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