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ABSTRACT 

We propose a definition for a new class of functions that may be stronger 
than the previous types. Some of its characterizations, connections with known 
ones and the effect of them on some topological spaces are studied . 

1- INTRODUCTION 

In recent years, one type of functions between topological spaces has been defined 
by three independent authors. In 1982, Mashhour et al. (3) called it 
M-precontinuous, in 1985, Reilly and Vamanamurthy (6) named it a preirresolute 
function and in 1988, Rose (8) called it A-function depending on the concept of 
almost-open set (8). 

Therefore, let A be a subset of a topological space X and its closure and interior are 
denoted bycl(A) and int(A), respectively. A is called preopen (2) or almost open (8) 
if Ac: int (cl (A)) and (X-A) is called preclosed or almost closed, respectively. The 
intersection (union) of all preclosed (preopen) sets which contain (contained in) A, is 
called preclosure (3) (preinterior (3)) and denoted by p.cl(A)(p.int)A)). The 
preboundary of A (p.b(A)) is the intersection of p.cl(A) and p-cl(X-A). The 
collection of all preopen sets in X will be denoted by PO(X). A function f:X~ Y is 
called M-precontinuous (3) (M.P.C) or preirresolute (6) (A-function(8)) if fl(V) is 
preopen (almost open) in X for each preopen (almost open) V in Y. f is called 
preopen (2) (preclosed (5)) ifthe image of each open (closed) is preopen (preclosed). 
A space X is called strongly compact (4) (S-closed (9), strongly Lindelof (4)) if for 
each preopen (semi-open, preopen) cover of X, there exists a finite subcover (a finite 
subcover, countable subcover) covers (its closure covers) X. Also, X is called a 
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resolvable space (1) ifthere is a subset D of X such that D and X-D are both dense in 
X. Spaces pre-Ti (i = 0,1,2) defined likewise the spaces Ti (i = 0,1,2,) except that 
open sets are replaced by preopen ones. 

2- DEFINITION AND CHARACTERIZATIONS 

Definition 2.1: A function f:X- Y is called strongly M-precontinuous (abbreviated 
as SMPC), if the inverse image of each preopen in Y is open in X. 

Some characterizations of SMPC are established throughout the next result. 

Theorem 2.1: Let f:X- Y be a function, then the following statements are 
equivalent. 

(i) f is SMPC. 
(ii) For each x ~ X and each V E PO(Y) containing f(x), there exists an open set U of 
X containing x such that f(U) CV. 
(iii) the inverse image of each preclosed set in Y is closed in X. 
(iv) cl (fl(B))C f' (p.cl(B)). for each B c Y. 
(v) f(clA)cp.cl(f(A)) foreachACX. 
(vi) f' (p. int (B))C int (fl (B)) for each B CY. 
(vii) b (f'(B))cfl(p.b (B)) for each B C:Y. 
(Viii) f(b(A))Cp.b(f(A)) foreachACX. 

Proof: (i) ~ (ii) and (i) ~ (iii) are obvious. 
(iii) - (iv) Since Be p.cl (B), for each B C:Y. so., fl (B) Cfl (p.cl (B)), but f' (p.cl 
(B)) is closed, hence cl (f1 (B))Cfl (p.cl(B)). 
(iv) ~ (v). Replacing f (A) instead of Bin (iv). 
(v) ~(iii). Let FCY be preclosed, then fl(F)C X and so 

f(clfl (F))C p-el (ff' (F))C p-cl(F) =F. This gives elf' (F)C f1 (F). Hence f' (F) 
is closed. 
(i) ~(vi). For any B CY, p.int (B) f PO(Y) and so f' (p-int (B)) ~ 1' (X). Hence 
f' (p.int(B)) = int (f' (p.int(B)))C int (f' (B)). 
(vi) =+ (i). Follows directly by taking BE: PO(Y). 
(vi) =+ (vii). Let BeY, since b(f' (B))= cl (f' (B))- int (fl (B))c fl (p.cl (B))­
f' (p.int (B)) = f' (p.b(B) U (p.int(B))). f' (p.int(B)) = f' (p.b(B)). 
(vii) ~ (viii). By putting f(A) instead of B, the result follows immediately. 
(viii) ~ (ii). Let BC Y be preclosed, then f' (B)C X 
by (viii) f(b(f' (B)))C p.b (ff' (B)) p.b (B)c p.cl(B) = B 
and so b(f' (B))C int f' (B))C f' (B) i.e. cl f' (B)C f' (B). Hence f' (B) is closed and 
therefore f is SMPC. 
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3. SOME CONNECTIONS AND PROPERTIES OF SMPC 

Next diagram shows the implications between SMPC and other known types of 
functions. 

MPC 
SMPC-------------------------------------~ { preirresolute 

A-function 

continuity-----------------------------------~ precontinuity 

These implications are not reversible as shown throughout the following examples. 

Example3.1: Let X= {a, b, c, d} having 't' 1 = {X,¢>, {a, b}, {a, b, d}} and 
't'z ={X, 0, {a,c}, {a, b, c} }. 

The function f: (X, "t' 1) ~ (X, 'r 2) defined as f( a) = f(b) = a, f( c) = b and f( d) = cis 
continuous but not SMPC. 

Example 3.2: Let X = {a, b, c, d } with -r 1 be an indiscrete topology and 
-,: 2 = {X, 0, {a}, {b}, {a, b}}. The identity function from (X, 't 1) (X, 't 2) is 

M-precontinuous but not SMPC. 

Theorem 3.1: The following holds for any function f: X~ Y 

(i) If X is submaximal, then f is SMPC iff it is M-precontinuous. 
(ii) SMPC coincides on continuity if Y is submaximal. 
(iii) If both X and Y are submaximal, then all types in previous diagram are 
equivalent. 

Proof: Follows by using Theorem ( 4) (7). 

Theorem 3.2: A function f: x~ Y, where Y = FUG denote the 
Hewitt-representation, cl (G) is open and {Y} £ PO(Y) for each Y E int. (F.) Then 
f is SMPC iff f: X~ PO(Y) is continuous. 

Proof: Under these assumptions and by Theorem (5) of (1), we have f: X~ Y is 
SMPC iff f 1(V) is open in X, for each V E PO(Y), that is iff f: X ~ PO(Y) is 
continuous. 

Corollary 3.1: Any function f: X~ Y, where Y is resolvable and each open set in it is 
closed. Then f is SMPC iff f: X~ PO(Y) is continuous. 

Proof: Since resolvabilty of any space in which each open set is closed is considered as 
one of the applications of the properties on Yin previous Theorem ( (1), Corollary 
(2) ). Then f: X~ Y is SMPC iff f: X~ PO(Y) is continuous. 

The following two results concerning compositions and restriction can be shown, 
therefore their proofs are an immediate consequence of their definitions. 
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Theorem 3.3: The following holds for functions f : X~ Y and g: Y ~ Z. 

(i) If both f and g gave were SMPC, then their composition is also SMPC. 
(ii) If gof is SMPC and f is open (preopen), then g is SMPC (preirresolute.) 
(iii) If g is SMPC and gof is preopen (preclosed), then f is open (closed). 
(iv) Iff is SMPC and g is precontinuous, then gof is continuous. 
(v) gof is SMPC if one of the next is verified. 

(1) fis SMPC and g is preirresolute. 
(2) f is continuous and g is SMPC. 

Theorem 3.4: Two statements are true for a function f: X~ Y 
(i) For any A C X, f/ A is SMPC iff is SMPC. 
(ii) If {Ute, o: E V} is anopencoverofX, thenfisSMPC, lff/U« is SMPC, for each 
C(f\7. 

Lemma 3.1 (5): Let {Xi: i E I} be a family oftopological spaces, 
X = II Xi the product space and Ai be a nonempty subset of Xi for 
i ~ I 

each i E I. For a positive integer n if A= Tr"Aii x n Xi, then 
j=i i=j 

A E PO(X) iff Aii ~ PO(Xii), j E: { 1, 2, 3, ............. n }. 

Theorem 3.5: The function f: X~ Y is SMPC if the graph function g : X~ Xx Y of 
f which defined by g(x) = (x,f(x)), for each x E X is SMPC. 

Proof: Let g be SMPC, x E. X and V € PO(Y) containing f(x). Then by Lemma (3.1) 
XxVE PO(XxY) containing g(x), so there exists an open set U of X containing xsuch 
that g(U)C XxV and hence f(U)C XxV. Therefore f is SMPC. 

Theorem 3.6: Let {~: ex. E: \l} be any family of spaces and f:X ~ n XI(. be SMPC. 
Then Poe of: X ~ X"' is SMPC, for each 0( E. \l, where P is the projection of 
n X,_ onto X 01 , for each~ E \7. 

Proof: We shall consider a fixed j E \l and let Vie PO(Xi), from projection 
properties, Pt(V) = Vix ~jX,i~PO( !f ~){see lemma 3.1} 

and so (Piof)·1 (Vi)= f 1 
( Pf' (Vi))= f' (Vi x lT x.r) E 't (X). 

a. *j 

Hence Pof is SMPC, for each j € \7. 

Theorem 3. 7: Let f« : Xft ~ Y ~ , VY « , oC €. \l be a family of functions and 

f: JrX~ ~rrY~ definedasf{x«} = {f« (xed}. Then fisSMPCifffct isSMPC, 
for each«. E \7. 
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Proof: let f be SMPC, for a fixed j ~ V and Vi E PO(Yi). 

Then Pt (Vi) =Vi x n Y~t E. PO(n Y~ ), Lemma (3.1) shows 
ct =l=j 

this fact and so f 1 (Pf1(Vi)) = fi·1 (Vi) x n ):(~ €. 't' (n Xec.) 
q, :/'J 

Hence f 1 (Vi) E 't(Xi). Therefore fi is SMPC, for each j E V 

Conversely, let fa is SMPC, for each a. E V and V E. PO ( n Y ~ ) . Then 

there exists finite V 0 of V such taht V = n Vi x n Y ct by Lemma 
J~Vo a.:/=j 

(3-1) Vi t: PO(Yi)for each j e V 0 and soft (Vi) E 't (Xi) for each j e V 0 this leads to 

fl(V) = n fi·1 (Vi) x n X« (n X a). Then f is SMPC. 

j ev o a=l=j 

Theorem 3.8: Iff« : X~ X a is defined fct (x) = X ex and f:X ~ TT X« is given by 
f(x) = { f« ( xQd} for each x e X, a. € V. Then f is SMPC iff f ct is SMPC for each 

~EV. 

Proof: Necessity, it is enough to show this fact atone fixedj e V. So, let Vi E. PO(Xi), 

by Lemma (3.1) and projection function one can show that 

v = vi X n Xa. E. PO (nX~) andbySMPCoffweget f' (V) = f 1 vi X n Xec.) 
a.j:j 

fi- 1 (Vi) X X €. t" (X) which gives 

Sufficiently, let f« b SMPC, for each ct e V and VE PO (TTX«. ). So, for a 
finite V o of V we get V = Tf Vi X TT X<X , hence by Lemma (3.1) 

jE\lo IX.=#oj 

Vi E PO (Xi) for each j E V o and therefore fi - 1 (Vi) E t (X) for each j E V o 

and so, f- 1 (V) = TT fi- 1 (Vi) x X € T (X). Hence f is MPC. 

j E \/ 0 • 

4- SMPC and some spaces 

Theorem 4.1: The image of compact space under a surjective SMPC function is 

strongly compact. 

Proof Let f:X ~ Y be surjective SMPC. Let also X be compact and {Vi : i. G I} be a 
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preopencoverofY. BySMPCoff, f 1(Vi)E ""t(X)foreachiE I. Hence {fl (Vi) :icr I} 
is open cover of X which is compact, then there exists a finite subfamily I0 of I such 
that X = U { fl (Vi): iE 10 } So, Y = f(X) = U{Vi:i€ I0 }. Hence Y is strongly 
compact. 

Corollary 4.1: Strongly compactness is preserved under a surjective SMPC 
function. 

Corollary 4.2: For any SMPC surjective function, the image of a compact space is 
nearly compact and almost compact. 

Theorem 4.2: Let f: X~ Y be SMPC surjective function and X be S- closed, then Y 
is almost compact. 

Proof: If {Vi : i e I} is preopen cover of Y, then {fl (Vi) : i E I} is open cover of X. 
Since X is S-closed, then there exists a finite I0C I suchthat X = U { cl f 1(Vi): i e 1

0
}. 

Thus, Y = U {f(clfl (Vi)): iE 10 }C U { p.cl(Vi): iE I0 }C U{ cl (Vi): i €10 } and soY 
is almost compact. 

Theorem 4.3: If f:X ~ Y is SMPC surjective and X is Lin del of, then Y is strongly 
Lindelof. 

Proof: Let {Vi :i E I} be preopen coverofY, then {f1(Vi):i E I} is opencoverofX. 
Since X is Lindelof, there exists a countable subcover with X = U { f 1 (Vi) : i E 10 

(countable)}. Hence Y = f(X) = U {Vi: i e I0 }C U {cl(Vi): iE 1
0
}, therefore Y is 

strongly Lindelof. 

Theorem 4.4: The inverse image of pre-Ti> (i=O, 1,2) under an injective SMPC 
function is Ti> (i = 0, 1, 2). 

Proof: We prove this result in one case (say i= 0. So, let f:X ~ Y be SMPC 
injective, Ybepre-T0 andx11 x2 be twodistinctpointsofX. Then f(x1) M(x2). Hence 
for each preopen set VC Y containing one off( xi), j E {1, 2}, there exists Ui E 't (X) 
containing a corresponding point xi, (j = 1,2) such that f(Uj)CVi. Then X is a 
T0 -Space. The other parts of the Proof follows similarly. 
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