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ABSTRACT 

Two new CG-methods are proposed in this work for nonlinear unconstrained optimization problems which are considered 
as memoryless Variable Metric (VM) methods. They are derived for the inexact line searches and evaluated numerically against 
Shanno's two memoryless VM-methods. The results indicate that, the respective new methods have practical improvements on 
the Shanno's methods. Moreover, they are clearly more efficient than the Perry's extended CG-method. 

INTRODUCTION 

Conjugate Gradient (CG) algorithms are iterative 
techniques which generate a sequence of approximations to 
the minimizer x* of a scalar function f(x) of a vector 
variable x. The sequence xk is defined by:-

(1-1) 

(1-2) 

where gk is the gradient of f(x),A.k is a positive scalar chosen 
to minimize f(x) along the search direction db and ~k is a 
scalar. defined by one of the following expressions:-

(l-3a) 

(1-3b) 

(1-3c) 
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(1-:lc) 

where Yk = gk+I - gk, and the definition of ~k in (l-3a) is 
that Clue to Hestenes and Stiefel [1]; ~kin (1-3b) is that due 
to Fletcher and Reeves, [2]; ~k in (l-3c) is that due to Polak 
and Ribere, [3); ~kin (l-3d) is that due to Dixon, [4]; and~ 
k in (1-3e) is that due to Al-Bayati and Al-Assady [5). 

Properties of CG-methods 

There are a number of common properties for all the 
CG-methods: 

l. d; G di = 0, j<i (The conjugacy condition) 

2. g; gi = 0, j<i (The orthogonality condition) 

3. d; g; =- g; g; =- II g; 11
2 

(The descent condition). 

4. They have the quadratic termination property. 
5. They require o(n) multiplication per iteration for 

convergence to the minimum solution 
(i.e., they are global convergence algorithms). 

where G is the Hessian matrix. 

Rate of convergence 

It is useful to examine the rate of convergence for each 
method. Rate of convergence can be expressed in various 
ways, but common classification is as follows, see for 
example Edgar and Himmelelbau [6] 

(1) Linear convergence: 

II xk+l -x *II 

II xk - x *II 
~ C, 0 ~ C ~ 1 

(usually slow in practice) 

(2) Order P convergence: 

llxk+l-x*ll 
~ C, C ~0, P~ 1 

llxk - x* liP 
(faster in practice) 

(1-2-1) 

(1-2-2) 

IfP=2, the order of convergence is said to be quadratic. 

(3) Superlinear convergence: 

Lim II xk+I -x *II ---+ 0 ask---+ oo 
k---->oo l!x k - x *II 

(1-2-3) 

(usually fast in practice) 

184 

Fletcher and Reeves CG-Algorithm (FRNAG) 

Among the most efficient CO-algorithm is the FR-CG 
algorithm which was coded as a NAG routine in different 
versions. Among these different versions, the routine of 
Harwell library in 1972. This routine was written in Fortran 
language and it needs another subroutine, namely 
FM02AD to compute the inner product of any two vectors. 

We have used the FR-CG routine to confirm our 
numerical computations in this research. The routine is 
coded in MIZE, [7], and it restarts every n+ 1 iterations. For 
more detail of restarting techniques see Poewell [8]. 

CG-methods as memoryless quasi Newton methods 

In this section we will present some established and new 
memoryless CO-algorithms. 

The memoryless quasi-Newton methods 

This type of CG-method was suggested, for the first time, 
by Perry [9] and was further analyzed by Shanno [10]. 
These algorithms generate descent directions even if 
inexact line searches are used since:-

(2-1-1) 

Multiplying eq. (2-1-1) by g ~ , yields 

d~ gk=-g~ Hkgk <0 (2-1-2) 

Since Hk is positive definite and g ~ Hk gk > 0 

dk is a descent direction. 

Also this type of algorithm does not need to update the 
matrix H explicitly (i.e., This reduces to a vector of order 
n). 

Perry's memoryless CG-method: 

Perry [9) developed a memoryless CO-algorithm as 
follows: he noted that in eq(1-2) the scalar ~k was chosen to 
make dk and dk+I conjugate using an exact line search 
(ELS). Since, in general line search are not exact, Perry 
relaxed this requirement and he rewrote eq(l-2) where ~k 
is defined by (l-3a) in an equivalent form, but assuming 
inexact line search (ILS); thus he obtained 

(2-2-1) 

But the projection matrix multiplying is not of full rank; 
hence he modified eq(2-2-1) as: 
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T T 
dk+l =- [I- vkyk + vkvk ]g 

T T k+l 
VkYk VkYk 

(2-2-2a) 

=- Qk+l gk+l (2-2-2b) 

Perry gave other reasons to support his new choice: 
First, the matrix ~+I satisfies the form 

which is similar but not identical to the quasi-Newton (QN) 
condition. Second, eq(2-2-2) reduces to eq(2-2-1) if an 

(ELS) is carried out at this iteration since then v[ gk+l =0 

Perry's limited experiments with his algorithm (six test 
functions with s 4) showed that it performs only slightly 
better than the standard CG-method. But we have used this 
algorithm with (15 test function, for s 2000) and we show 
that it performs better than the standard CG-method. 

Algorithm (Perry): 

We list below the outlines of Perry's algorithm. 

For an initial point x 

Step (1): set k = 1, dk =- gk/11 gk 11 

Step (2): set xk+J = xk + Ak dk, where A.k is a scalar chosen 
in such a way that fk+J < fk (ILS) 

Step (3): check for convergence, II II gk+l < E, where E is 

small positive tolerance, stop. 

Step (4): otherwise, ifk = n 

Compute the new search direction defined by 

dk+l = -gk+l (Ak d r dk I g~+] gk+l); set k = 1, and go to 
step 2. Else, set k = k + 1. 

Step (5): compute the new search direction defined by 

And go to step (2). 
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Shanno's single update memoryless CG-method 

Shanno [10] addressed the issue that eq(2-2-2a) does not 
satisfY the actual QN-condition, which requires an update 
of the approximation to the inverse Hessian matrix Hk+1 

which satisfY H~+IYk = vk. 

He also pointed out that the matrix Qk+ is not necessarily 
symmetric positive definite. So that eq(2-2-2a) may not 
define downhill direction. Hence, he symmetrized Qk+I by 
adding an appropriate term. Specifically, Shanno proposed: 

(2-3-2) 

But this new symmetrix matrix does not satisfY neither 
(2-2-3) nor (2-3-1), so he again modified it in order to make 
it to do so. He then obtained: 

This new form of the projection matrix Qk+1 has a special 
relationship with the BFGS update formula. Indeed the 
actual BFGS formula is given by: 

(2-3-4) 

It is then easily seen that eq(2-3-3) is equivalent to 
eq(2-3-4) with Hk replaced by I. 

The CG-method, which is referred to as a memoryless 
BFGS method is defined by 

(2-3-5) 

then 

(2-3-6) 

Properties of Shanno's method 

First, for Shanno's method it is necessary to ensure that: 

v[ Yk >O,fork>l, (2-3-1-1) 
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in order to maintain positive definite updating and hence 
that a downhill direction dk+I is obtained. To explain that 
for the quadratic function, using the relation Hk+I Yk = Vk, 

since <Hlc+I = G-1
) hence yk= Gk Vk, substituting in eq(2-3-1-

1) we get v[ Gvk > 0 since G is positive definite and hence 

v[ Yk > 0. Second, eq(2-3-6) reduces again to eq(2-2-1) 

assuming ELS. Moreover, it does not require storage of the 
matrix ~+I in eq(2-3-3). Thus, no additional information is 
needed to compute dk+I beyond the standard CG-method. 

Self-scaling memoryless CG-methods 

The idea of the self-scaling CG-method was originally 
developed in a series of papers by Oren, [11], Luenberger, 
[12]; Oren and Spedicato, [13]; Al-Bayati [14] and finally 
Al-Bayati and Al-Salih. [15] for any unconstrained 
nonlinear function f(x). 

Shanno's self-scaling memoryless CG-method (MSHN) 

Oren, [ 11] established the self-scaling BFGS algorithm 
for which Hk+I was given by: 

where 

(3-1-2) 

'Ilk is the scaling factor defined by:-

(3-1-3) 

However, it seems natural to scale the CG-method on 
every iteration by using eq(2-3-6): this amounts to 
substituting I for Hk in eq(3-1-1); thus Shanno defined a 
modified CG-method with Hk replaced by I and 

(3-1-4) 

Unfortunately, Shanno found that this modified CG­
method did not produce as good results as the one just 
defined by eq(2-3-6). 
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Modified Shanno's algorithm (MSHN) 

We list below the lines of modified Shanno algorithm for 
an initial point x1 

Step (2): set xk+I = xk + A.k ~' where A. is a scalar chosen in 
such a way that fk+I < fk (ILS) 

Step (3): check for convergence, II gk+l II < E, where E is 

small positive tolerance, stop. 

Step (4): otherwise, ifk = n 

compute the new search direction defined by 

set k = 1, and go to step (2). Else, set k = k + 1. 

Step (5): compute the new search direction defined by 

and go to step (2). 

New memoryless CG-methods 

In this research we have investigated two new 
memoryless CG-methods which employ single VM­
updates; namely NEWI and NEW2 memoryless CG­
methods. 

The first new !lroposed algorithm (NEWt) 

Al-Bayati, [14] investigated another family of VM­
updates for which the updating matrix Hk was defined by 

The above updating formula generates positive definite 
matrices, (see Al-Bayati, [14]). 

Now since 
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(3-2-1-2) 

Hence 

(3-2-1-3) 

We also note that if vJ gk+l = 0 (using ELS) then 
eq(3-2-I-3) reduces to: 

which is the standard Hestense and Stiefel CG-method and 
therefore has n-step convergence to the minimum defined 
precisely by the new VM-update (3-2-1-1), where the 
approximation to the inver~e~llessian reset to the identity 
matrix at every step. 

Algorithm (NEWl) 

We list below the outlines of the first proposed 
algorithm (NEW1). For an initial point x1 

Step (I): set k = I, dk=- =- gk Ill gk II 

Step (2): set Xk+J = xk + A.k ~. where A.k is a scalar chosen in 
such a way that fk+l < fk (ILS) 

Step (3): check for convergence, !lgk+l II <E, 

where eis small positive tolerance, stop. 

Step (4): otherwise, ifk = n 

compute the new search direction defined by 

set k = I, and go to step (2). Else, set k = k + I. 

Step (5): compute the new search direction defined by 

and go to step (2). 
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The second proposed algorithm (NEW2) 

Another alternative self-scaling VM-update was 
implemented by Al-Bayati and Al-Salih, [15] for which the 
updating formula Hk has the form: 

where this updating formula generates also positive definite 
matrices. 

Using I for Hk in the RHS of eq(3-2-2-1) we get the 
following new proposed method: 

Hence: 

(3-2-2-2) 

We also note that if vf gk+l =0 (using ELS) 

then 
eq(3-2-2-2) reduce to: 

which is the standard Hestenes and Stiefel CG-method. 

Algorithm (NEW2) 

We list below the outlines of the second proposed 
algorithm (NEW2). For an initial point x1 

Step(l): setk= 1,~=-gk fllgk II 

Step (2): set Xk+1 = xk + A.k dk, where A.k is a scalar chosen in 
such a way that fk+l < fk (ILS). 

Step (3): check for convergence, II g k+l II < E, where E is 

small positive tolerance, stop. 

Step (4): othenvise, ifk = n 

compute the new search direction defined by 

dk+l =- gk+l (.A.k d~ dk I gL1 gk+l ); 
set k = I, and go to step (2). Else, set k = k +I. 
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Step (5): compute the new search direction defined by 

and go to step (2). 

Line search criterion 

For all memoryless CG-algorithms discussed in this 
work it is necessary to ensure that: 

v[ Yk >O,fork>t, (3-4-l) 

in order to maintain the positive definite property and 
hence a downhill direction d will be obtained. However, 
condition (3-4-1) is in practice generally replaced by a 
slightly stronger line search criterion namely that line 
searches are terminated when both: 

(3-4-2) 

and 

(3-4-3) 

where these conditions are sufficient to ensure convergence 
of any descent method, as quoted by Shanno, [16]. Shanno 
found that pz = 0.0001 works satisfactorily, but, p1 is the 
critical and sensitive parameter. He found that p1 varies 
between 0.1 and 0. 9, and therefore we have used the same 
two values for our first and second new algorithms defined 
in (3-2-1-3) and (3-2-2-2). For more details see Powell [17]. 

RESULTS AND CALCULATIONS 

In order to assess the performance of the two new 
proposed algorithms (NEWI, NEW2), seven CG­
algorithms are tested over (15) generalized selected well­
known test functions with different dimensions where 100 
::::; n::::; 2000. 

(I) Shanno's method (Shanno) 
(II) Modified Shanno's method (MSHN). 
(III) Perry's method (Perry). 
(IV) Hestenes and Stiefel method (HS). 
(V) The new method (NEWI). 
(VI) The new method (NEW2). 
(VII) Fletcher and Reeves method (FRNAG). 
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For tl1e purpose of a unique comparisons all these 
algorithms (except the FRNAG routine) are restarted every 
n iterations or 

whenever 

is satisfied, with: 

All the algorithms use exactly the same line search 
strategy which is the cubic fitting technique, directly 
adapted from Bunday, [18]. 

These algorithms are assumed to have convergence 
when each element of the gradient vector is less than l.e-5; 

that is II gk+l II <1 x 10-5
. All computations were performed 

on a 286 personal computer, with math co-processor. 

The comparative performance for all these algorithms 
are evaluated by considering both the total number of 
function evaluations (NOF). Whereas NOF is the best 
measure of actual work done it is dependent on the linear 
search and the accuracy required; NOI is preferred by some 
others for this reason, but the requirement of higher 
accuracy (and so high NOF) can even reduce (NOI), both 
should therefore be taken into account. 

Also we have computed the CPU time and the total 
minimum function value (FMIN) required by each algorithm 
to satisfy the convergence criterion. 

Indeed, all our numerical results are presented in the 
following tables: 

Computation were carried out between all the 
considered seven CG-algorithms with dimensions 100, 
1000 and 2000, respectively. Table 1 gives a very well­
known study between the average of the NOI and NOF of 
the all selected test functions and for all selected 
dimensions 100, 1000 and 2000. 
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Table 1 
The average number of NOI and NOF required by each test function for different dimensions 

Test 

Fn. 

FRNAG PERRY HS SHANNO MSHN NEWl NEW2 

NOI NOF NOI NOF NOI NOF NOI NOF NOI NOF NOI NOF NOI NOF 

1- 51 249 11 30 11 30 11 32 11 48 11 32 11 32 

2- 13 19 6 19 6 19 6 19 6 20 6 19 6 19 

3- 77 205 27 67 27 67 27 67 28 193 42 58 19 46. 

4- 775 1498 43 132 49 138 63 193 48 230 40 107 44 115 

5- 11 54 10 43 10 33 10 42 11 52 11 42 10 44 

6- 151 340 25 79 25 79 26 83 24 96 26 81 25 82 

7- 34 77 9 29 9 29 9 29 9 33 9 29 8 28 

8- 18 51 6 20 6 20 6 20 6 28 6 20 6 20 

9- 528 557 260 524 260 524 260 524 260 784 260 525 261 526 

10- 334 640 37 88 38 89 37 88 38 146 36 86 36 84 

11- 145 553 15 44 15 44 14 41 16 87 16 45 15 42 

12- 441 782 26 58 26 58 26 58 26 82 26 58 26 58 

13- 110 225 106 302 111 306 112 307 96 311 107 302 110 298 

14- 81 182 29 76 29 76 27 69 30 128 32 78 30 76 

15- 13 75 12 80 21 80 24 94 17 71 16 63 16 62 

Taking the FRNAG routine as: 100% NOI; NOF and time yields: 

Table 2 

Tools FRNAG PERRY HS SHANNO MSHN NEWl NEW2 

NOI 100 33 33 34 32 32 31 

NOF 100 41 40 43 57 39 37 

Time 100 55 59 61 68 57 55 

It is clear from the above table that both NEWI and NEW2 are the most efficient algorithms according to our calculations 
and for our selected group of test functions. If we neglect the FRNAG routine: (It is coded in a Fortran language) we will give 
the following comparison:-
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Table 3 

Tools NEW2 NEWt HS SHANNO MSHN PERRY 

NOI 100 103 108 112 104 107 

NOF 100 104 107 116 154 112 

Time 100 104 107 112 124 100 

It is obvious that the new proposed algorithms improve the other published CG-algorithms in (4-12)% NOI; (4-54)% NOF 
and (0-24)% Time. 

Taking the FRNAG routine as: 100% NOI; NOF and time for n=lOOO yields:-

Table 4 

Tools FRNAG PERRY HS SHANNO MSHN NEWl NEW2 

NOI 100 92 22 21 20 20 21 

NOF 100 27 27 29 38 26 26 

Time 100 30 32 35 40 36 33 

From the above table it is seen that both NEW1 and NEW2 are the most efficient algorithms according to our calculatipns 
and for our selected group of test functions. If we neglect the FRNAG routine we will give the following comparisons:-

Table 5 

Tools NEW2 NEWt HS SHANNO MSHN PERRY 

NOI 100 89 100 104 95 99 

NOF 100 101 104 109 143 101 

Time 100 108 96 106 120 90 

Clearly the new proposed algorithms improve the other published CG-algorithms in about 4% NOI (excluding Perry's 
algorithm); 43% NOF and about 20% time. 

Finally, taking the FRNAG routine as: 100% NOI; NOF and time for n=2000 yields:-

Table 6 

Tools FRNAG PERRY HS SHANNO MSHN NEWl NEW2 

NOI 100 24 25 25 26 24 24 

NOF 100 30 30 31 51 30 30 

Time 100 32 35 38 53 35 34 
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Appendix 

All the presented test functions are from the general 
literature: 

1. Generalized Beale Function: 

f= [1.5-x2i-1 (l-x2i)f+ [2.25-x2i-1 (l-x2zi)f+ [2.625-x2i-11 
(l-X

3
zJf, x,= (0, Ol 

2. Generalized Edgar & Himmel Function: 

n 

f= L (x2*i-l-2)4 + (x2*i-l-2)2• X2·?+(x2•i+1)2
, 

x,= (1, O)T 

3. Non-Diagonal Variant of Rosenbrock Function: 

n 

f= L [100 (x1-x?)2 +(1-xi], Xo= (-1; ... l 
i=2 

4. Generalized Powell Function: 

n/4 

f= L [(X4i-3 +IOX4i-2)
2 

+ 5(X4i-l -X4i)2 + (X4i-z-2X4i-1)4 

i=l 

+ 10(X4i-3 -X4i)t x,=(3,-1,0, 1; ... )r 

5. Generalized Pent. Function: 

n 

f= L [(xi-1)2 + exp(x2,-0.25)2], 
i=l 

6. Generalized Pen2. Function: 

n 

f= L [exp(xi-V+ (x2i-0.25)2], x,= i 
i=l 

7. Generalized Shallow Function: 

n/2 

f= L [(X
2
zi-l-x2i)2 + (1-xzi-1)2

), x,= (-2; ... )r 
i=] 

8. Generalized Strait Function: 

n 

f= L [(x2zi-1-Xzi)2 + 100 (l-x2i_1)
2
], 

i=l 

9. Generalized Tri. Function: 
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n 

f= L [2xi-Xi-lf, x,= (1; ... )r 
i=2 

10. Generalized Wood Function: 

n/4 

f= Ll00 [(x4i-z-X24i-3i] + (l-x4i-3i+ 90(X4i-x24i-1)2 + 
i=l 

(l-X4i-1)
2 + 10.1 [(X4i-z-1)2+ (X4i-1)2] + 19.8 (X4i-2-l) 

(X4i-l), 
x,= (-3, -1, -3 -1; ... )r 

11. Generalized Cubic Function: 

n/4 

f= L [100(x2i-X3zi-d+ (1-Xzi-1)2, 
i=l 

12. Generalized Dixon Function: 

n n-1 

f= L [(1-xl)2+ (l-x2)2+ L(x;2 -xi+li], x,= (-1; ... )r 
i=I 

13. OSP, Function: 

n 

f= [L ix2i]2, 
i=l 

14. Generalized Rosenbrok Function: 

n/2 

f= L [IOO(x 2i -x 2 zt-1) 2 +(1-x 2i_1 )
2

], 

i-1 
X0 = (-1.2,1; ... )r 

15. Sum Function: 

x,= (2; ... )r 
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