Handling data uncertainties in event tree analysis
المؤلف | Ferdous, R. |
المؤلف | Khan, F. |
المؤلف | Sadiq, R. |
المؤلف | Amyotte, P. |
المؤلف | Veitch, B. |
تاريخ الإتاحة | 2009-12-27T06:59:13Z |
تاريخ النشر | 2009 |
اسم المنشور | Process Safety and Environmental Protection |
المعرّف | http://dx.doi.org/10.1016/j.psep.2009.07.003 |
الاقتباس | Refaul Ferdous, Faisal Khan, Rehan Sadiq, Paul Amyotte, Brian Veitch, Handling data uncertainties in event tree analysis, Process Safety and Environmental Protection, Volume 87, Issue 5, September 2009, Pages 283-292 |
الملخص | Event tree analysis (ETA) is an established risk analysis technique to assess likelihood (in a probabilistic context) of an accident. The objective data available to estimate the likelihood is often missing (or sparse), and even if available, is subject to incompleteness (partial ignorance) and imprecision (vagueness). Without addressing incompleteness and imprecision in the available data, ETA and subsequent risk analysis give a false impression of precision and correctness that undermines the overall credibility of the process. This paper explores two approaches to address data uncertainties, namely, fuzzy sets and evidence theory, and compares the results with Monte Carlo simulations. A fuzzy-based approach is used for handling imprecision and subjectivity, whereas evidence theory is used for handling inconsistent, incomplete and conflicting data. Application of these approaches in ETA is demonstrated using the example of an LPG release near a processing facility. |
اللغة | en |
الناشر | Elsevier B.V. |
الموضوع | Data uncertainties Fuzzy-based approach Evidence theory Event tree analysis Monte Carlo simulations |
النوع | Article |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكيميائية [1174 items ]