Application of generalized differential transform method to multi-order fractional differential equations
المؤلف | Ertürk, Vedat Suak |
المؤلف | Momani, Shaher |
المؤلف | Odibat, Zaid |
تاريخ الإتاحة | 2009-12-28T08:52:12Z |
تاريخ النشر | 2007-02-13 |
اسم المنشور | Communications in Nonlinear Science and Numerical Simulation |
المعرّف | http://dx.doi.org/10.1016/j.cnsns.2007.02.006 |
الاقتباس | Erturk, V. S., Momani, S., & Odibat, Z. (2008). Application of generalized differential transform method to multi-order fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 13(8), 1642–1654 |
الملخص | In a recent paper [Odibat Z, Momani S, Erturk VS. Generalized differential transform method: application to differential equations of fractional order, Appl Math Comput. submitted for publication] the authors presented a new generalization of the differential transform method that would extended the application of the method to differential equations of fractional order. In this paper, an application of the new technique is applied to solve fractional differential equations of the form y(μ) (t) = f (t, y (t), y(β1) (t), y(β2) (t), ..., y(βn) (t)) with μ > βn > βn - 1 > ... > β1 > 0, combined with suitable initial conditions. The fractional derivatives are understood in the Caputo sense. The method provides the solution in the form of a rapidly convergent series. Numerical examples are used to illustrate the preciseness and effectiveness of the new generalization. |
اللغة | en |
الناشر | Elsevier |
الموضوع | Caputo fractional derivative Differential transform method Fractional differential equations Multi-order equations |
النوع | Article |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الرياضيات والإحصاء والفيزياء [740 items ]