عرض بسيط للتسجيلة

المؤلفQidwai, Uvais
المؤلفShamim, Shahzad
المؤلفRaquib, Farhana
المؤلفEnam, Ather
تاريخ الإتاحة2009-12-29T10:29:59Z
تاريخ النشر2007-11-24
اسم المنشورIEEE International Conference onSignal Processing and Communications 2007
الاقتباسQidwai, U.; Shamim, M.S.; Raquib, F.; Enam, A., "Failed Back Surgery Syndrome (FBSS) Prediction using Fuzzy Inference System (FIS)," Signal Processing and Communications, 2007. ICSPC 2007. IEEE International Conference on , vol., no., pp.880-883, 24-27 Nov. 2007
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/ICSPC.2007.4728460
معرّف المصادر الموحدhttp://hdl.handle.net/10576/10567
الملخصIn this paper a fuzzy inference system (FIS) is presented to predict the level of risk for a class of patients to be needing a repeated surgery for the herniated lumber disc (or more commonly known as slipped disc). The FIS is based upon a clinical study that was conducted by a number of doctors at Aga Khan University Hospital in Pakistan with the objective that certain clinical measures can be used from the beginning to assist the physician in making a better risk estimate for the patient at hand. As such, over 90 clinical markers were collected through patients' surveys over a period of 5 years (2000-2004). The presented study utilizes a subset of 16 markers and has recommendation for 7 of these markers for a reasonably accurate risk prediction. A set of 11 rules has been established that constitute the mapped understanding from the physicians' heuristics. Such a system will be a very helpful tool for medical professionals for making quick risk assessment for a patient and will enable them to more accurately define the treatment for the same.
اللغةen
الناشرIEEE
الموضوعFBSS
Fuzzy Inference System
Fuzzy
Inference System
العنوانFailed Back Surgery Syndrome (FBSS) Prediction using Fuzzy Inference System (FIS)
النوعArticle
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة