• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Technology Innovation and Engineering Education Unit
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Technology Innovation and Engineering Education Unit
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An improved method for nonstationary signals components extraction based on the ICI rule

    Thumbnail
    View/Open
    Boashash-Sucic-Lerga-et-al_2011_IEEE_WOSSPA_component-extraction-ICI.pdf (492.4Kb)
    Date
    2011
    Author
    Lerga, J
    Sucic, V
    Boashash, B
    Metadata
    Show full item record
    Abstract
    This paper proposes an improved adaptive algorithm for components localization and extraction from a noisy multicomponent signal time-frequency distribution (TFD). The algorithm, based on the intersection of confidence intervals (ICI) rule, does not require any a priori knowledge of signal components and their mixture. Its efficiency is significantly enhanced by using high resolution and reduced cross-terms TFDs. The obtained results are compared for different signal-to-noise ratios (SNRs) and various time and lag window types used in the modified B-distribution (MBD) calculation, proving the method to be a valuable tool in noisy multicomponent signals components extraction in the time-frequency (TF) domain.
    DOI/handle
    http://dx.doi.org/10.1109/wosspa.2011.5931497
    http://hdl.handle.net/10576/10846
    Collections
    • Technology Innovation and Engineering Education Unit [‎63‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      A Deep Learning Model for LoRa Signals Classification Using Cyclostationay Features 

      Almohamad A.; Hasna , Mazen; Althunibat S.; Tekbiyik K.; Qaraqe K. ( IEEE Computer Society , 2021 , Conference)
      With the witnessed exponential growth of Internet of Things (IoT) nodes deployment following the emerging applications, multiple variants of technologies have been proposed to handle the IoT requirements. Among the proposed ...
    • Thumbnail

      Multiple-view time-frequency distribution based on the empirical mode decomposition 

      Stevenson, N.J; Mesbah, M; Boashash, B ( Institution of Engineering and Technology , 2010 , Article)
      This study proposes a novel, composite time-frequency distribution (TFD) constructed using a multiple-view approach. This composite TFD utilises the intrinsic mode functions (IMFs) of the empirical mode decomposition (EMD) ...
    • Thumbnail

      Detection of seizure signals in newborns 

      Boashash, Boualem; Barklem, P; Keir, M ( IEEE , 1999 , Conference)
      This paper considers a system design for processing a multidimensional biomedical signal formed by EEG, ECG, EOG and motion recorded from a newborn, for the purpose of detection of epileptic seizures in newborns as an ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video