An improved method for nonstationary signals components extraction based on the ICI rule
Date
2011Metadata
Show full item recordAbstract
This paper proposes an improved adaptive algorithm for components localization and extraction from a noisy multicomponent signal time-frequency distribution (TFD). The algorithm, based on the intersection of confidence intervals (ICI) rule, does not require any a priori knowledge of signal components and their mixture. Its efficiency is significantly enhanced by using high resolution and reduced cross-terms TFDs. The obtained results are compared for different signal-to-noise ratios (SNRs) and various time and lag window types used in the modified B-distribution (MBD) calculation, proving the method to be a valuable tool in noisy multicomponent signals components extraction in the time-frequency (TF) domain.
Collections
- Technology Innovation and Engineering Education Unit [63 items ]
Related items
Showing items related by title, author, creator and subject.
-
A Deep Learning Model for LoRa Signals Classification Using Cyclostationay Features
Almohamad A.; Hasna , Mazen; Althunibat S.; Tekbiyik K.; Qaraqe K. ( IEEE Computer Society , 2021 , Conference)With the witnessed exponential growth of Internet of Things (IoT) nodes deployment following the emerging applications, multiple variants of technologies have been proposed to handle the IoT requirements. Among the proposed ... -
A diversity compression and combining technique based on channel shortening for cooperative networks
Hussain S.I.; Alouini M.-S.; Hasna , Mazen ( IEEE , 2012 , Article)The cooperative relaying process with multiple relays needs proper coordination among the communicating and the relaying nodes. This coordination and the required capabilities may not be available in some wireless systems ... -
Time-frequency features for pattern recognition using high-resolution TFDs: A tutorial review
Boashash B.; Khan N.A.; Ben-Jabeur T. ( Elsevier Inc. , 2015 , Article)This paper presents a tutorial review of recent advances in the field of time-frequency (t, f) signal processing with focus on exploiting (t, f) image feature information using pattern recognition techniques for detection ...