• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Inference In The Log-Logistic Distribution Based On An Adaptive Progressive Type-Ii Censoring Scheme

    Thumbnail
    View/Open
    Maha Sewaiilem_OGSApprovedThesis.pdf (1.551Mb)
    Date
    2019-06
    Author
    Sewailem, Maha F.
    Metadata
    Show full item record
    Abstract
    The primary aim of this study is to explore the maximum likelihood estimation (MLE) and the Bayesian approach to estimate the parameters of log-logistic model and calculate the approximate confidence interval for the parameters and the survival function in both methods based on an adaptive progressive type-II censoring scheme. The parameters of the probability distribution are estimated via the Newton-Raphson Method and the Bayes estimators, based on squared error loss function (SELF). The approximate confidence interval for the reliability function has been calculated using the delta method; the approximate credible intervals for the unknown parameters and the survival function using the Bayesian approach have been constructed using Markov Chain Monte Carlo (MCMC) method. Moreover, a Monte Carlo study has performed to examine the proposed methods under different situations, based on mean squared error, bias, coverage probability, and expected length estimated criteria. Application to real life data is included, in order to view how the proposed methods, work in practice. It is observed that the Bayesian approach is better than MLE for estimating the log-logistic model parameters.
    DOI/handle
    http://hdl.handle.net/10576/11672
    Collections
    • Mathematics, Statistics & Physics [‎35‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video