A Magnetic-Field Guided Interface Coassembly Approach to Magnetic Mesoporous Silica Nanochains for Osteoclast-Targeted Inhibition and Heterogeneous Nanocatalysis
Author | Wan, L. |
Author | Wan, Li |
Author | Song, Hongyuan |
Author | Chen, Xiao |
Author | Zhang, Yu |
Author | Yue, Qin |
Author | Pan, Panpan |
Author | Su, Jiacan |
Author | Elzatahry, Ahmed A. |
Author | Deng, Yonghui |
Available date | 2019-09-15T10:58:27Z |
Publication Date | 2018-06-20 |
Publication Name | Advanced Materials |
Identifier | http://dx.doi.org/10.1002/adma.201707515 |
Citation | Wan, L., Song, H., Chen, X., Zhang, Y., Yue, Q., Pan, P., Su, J., Elzatahry, A. A., Deng, Y. H., Adv. Mater. 2018, 30, 1707515. https://doi.org/10.1002/adma.201707515 |
ISSN | 0935-9648 |
Identifier | Article number: 1707515 |
Abstract | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1D core–shell magnetic materials with mesopores in shell are highly desired for biocatalysis, magnetic bioseparation, and bioenrichment and biosensing because of their unique microstructure and morphology. In this study, 1D magnetic mesoporous silica nanochains (Fe 3 O 4 @nSiO 2 @mSiO 2 nanochain, Magn-MSNCs named as FDUcs-17C) are facilely synthesized via a novel magnetic-field-guided interface coassembly approach in two steps. Fe 3 O 4 particles are coated with nonporous silica in a magnetic field to form 1D Fe 3 O 4 @nSiO 2 nanochains. A further interface coassembly of cetyltrimethylammonium bromide and silica source in water/n-hexane biliquid system leads to 1D Magn-MSNCs with core–shell–shell structure, uniform diameter (≈310 nm), large and perpendicular mesopores (7.3 nm), high surface area (317 m 2 g −1 ), and high magnetization (34.9 emu g −1 ). Under a rotating magnetic field, the nanochains with loaded zoledronate (a medication for treating bone diseases) in the mesopores, show an interesting suppression effect of osteoclasts differentiation, due to their 1D nanostructure that provides a shearing force in dynamic magnetic field to induce sufficient and effective reactions in cells. Moreover, by loading Au nanoparticles in the mesopores, the 1D Fe 3 O 4 @nSiO 2 @mSiO 2 -Au nanochains can service as a catalytically active magnetic nanostirrer for hydrogenation of 4-nitrophenol with high catalytic performance and good magnetic recyclability. |
Sponsor | This work was supported by the NSF of China (51372041, 51422202, 91749204, 21271047 and 21673048), Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (17JC1400100), Youth Top-notch Talent Support Program of China, the state key laboratory of Transducer Technology of China (Grant No. SKT1503), the Outstanding Talents Cultivation Program of Shanghai Health System, and Qatar University Grant GCC-2017-001. The authors thank Prof. Guangrong Zhou for assistance in TEM characterization. |
Language | en |
Publisher | Wiley |
Subject | catalysis core–shell magnetic mesoporous materials nanochain osteoclasts differentiation |
Type | Article |
Issue Number | 25 |
Volume Number | 30 |
ESSN | 1521-4095 |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Materials Science & Technology [310 items ]