• English
    • العربية
  • العربية 
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
Advanced Search
Advanced Search
View Item 
  •   Qatar University QSpace
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University QSpace
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comparative study of novel activated AMP using 1,5-diamino-2-methylpentane vs MEA solution for CO2 capture from gas-fired power plant

    Thumbnail
    Date
    2018
    Author
    Nwaoha C.
    Tontiwachwuthikul P.
    Benamor A.
    Metadata
    Show full item record
    Abstract
    Bench-scale pilot plant study of AMP and 1,5-diamino-2-methylpentane (DA2MP) blend for CO2 capture from gas-fired power plant is investigated. The concentration of the amine blend is 2 kmol/m3 AMP-1.5 kmol/m3 DA2MP while that of single solvent MEA is 5 kmol/m3. Comparative analysis was based on CO2 absorption efficiency (%), absorber mass transfer coefficient (KGav(ave), kmol/kPa h m3), desorber mass transfer coefficient (KLav, h?1), rich amine loading (�rich, mol CO2/mol amine), lean amine loading (�lean, mol CO2/mol amine), cyclic loading (CL, mol CO2/mol amine), cyclic capacity (CC, mol CO2/L-amine soln.), CO2 absorption rate (rabs, g-CO2/h), and regeneration energy (Qreg, GJ/tonne CO2). The contribution of sensible energy (Qsen, GJ/tonne CO2), vaporization energy (Qvap, GJ/tonne CO2), and desorption heat (?Hdes, GJ/tonne CO2) towards Qreg was also investigated. Results showed that the AMP-DA2MP blend possess higher KGav(ave) (11.66%), KLav (7.67% higher), and CO2 absorption efficiency (4.66% higher) than MEA. Also, the superior cyclic loading (51.5%) and cyclic capacity (6.7%), and lower regeneration energy (13.8% lower) was observed for the AMP-DA2MP blend. The desorption heat (?Hdes) was the major contributor to the Qreg of both amine systems however the ?Hdes of AMP-DA2MP was 23% lower than MEA. It was noticed that though the water concentration of the amine blend (60.7 wt%) is lower than MEA (70 wt%), the vaporization energy of the amine blend was 32.9% higher than MEA. Therefore, besides the amount of water concentration, higher desorber temperature profile, amine solvent vapor pressure and boiling point also increases the vaporization energy. The results is a revelation of possible reduction in capital cost and operating costs for the AMP-DA2MP blend compared to the standard MEA. ? 2018 Elsevier Ltd

    DOI/handle
    http://dx.doi.org/10.1016/j.fuel.2018.07.147
    http://hdl.handle.net/10576/11926
    Collections
    • GPC Research [‎45 ‎ items ]

    entitlement


    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of QSpace
      Communities & Collections Publication Date Author Title Subject Type Language
    This Collection
      Publication Date Author Title Subject Type Language

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU