Data driven feature extraction for gender classification using multi-script handwritten texts
المؤلف | Moetesum M. |
المؤلف | Siddiqi I. |
المؤلف | Djeddi C. |
المؤلف | Hannad Y. |
المؤلف | Al-Maadeed S. |
تاريخ الإتاحة | 2019-09-24T08:16:01Z |
تاريخ النشر | 2018 |
اسم المنشور | Proceedings of International Conference on Frontiers in Handwriting Recognition, ICFHR |
المصدر | Scopus |
الترقيم الدولي الموحد للكتاب | 978-1-5386-6009-11 |
الرقم المعياري الدولي للكتاب | 21676445 |
الملخص | This paper presents a study on assessing the effectiveness of machine learned features to predict gender of writers from images of handwriting. Pre-trained Convolutional Neural Networks have been employed as feature extractors to discriminate male and female handwriting while classification is carried out using a number of classifiers, Linear Discriminant Analysis (LDA) being the most effective. Feature extraction is carried out by changing the scale of observation using word, patch and page images. Experiments are carried out on English and Arabic handwriting samples of the QUWI database and the realized results demonstrate the effectiveness of machine learned features in predicting gender from handwriting. ? 2018 IEEE. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Convolutional Neural Networks Gender Classification Handwriting Multi-scrip Text |
النوع | Conference |
الصفحات | 564 - 569 |
رقم المجلد | 2018-August |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2427 items ]