• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automated class-based compression for real-time epileptic seizure detection

    Thumbnail
    Date
    2018
    Author
    Abdellatif A.A.
    Mohamed A.
    Chiasserini C.-F.
    Metadata
    Show full item record
    Abstract
    The emergence of next generation wireless networking technologies has motivated a paradigm shift in development of viable mobile-Health applications for ubiquitous real-time healthcare monitoring. However, remote healthcare monitoring requires continuous sensing for different biosignals and vital signs which results in generating large volumes of data that requires to be processed, recorded, and transmitted. In this paper, we propose our vision for the benefits of leveraging edge computing for enabling automated real-time epileptic seizure detection. In particular, we propose an adaptive classification and data reduction technique that reduces the amount of transmitted data, according to the class of patients, while enabling fast emergency notification for the patients with abnormality. Using such an approach, the patient data aggregator can automatically reconfigures its compression threshold based on the characteristics of the gathered data, while maintaining the required application distortion level. Our results show the excellent performance of the proposed scheme in terms of classification accuracy and data reduction gain, as well as the advantages that it exhibits with respect to state-of-the-art techniques. 2018 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/WTS.2018.8363937
    http://hdl.handle.net/10576/11992
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video