System-on-chip solution for patients biometric: A compressive sensing-based approach
المؤلف | DjelouatH. |
المؤلف | ZhaiX. |
المؤلف | AlDisiM. |
المؤلف | AmiraA. |
المؤلف | BensaaliF. |
تاريخ الإتاحة | 2019-10-03T10:50:03Z |
تاريخ النشر | 2018 |
اسم المنشور | IEEE Sensors Journal |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 1530437X |
الملخص | The ever-increasing demand for biometric solutions for the Internet-of-Things (IoT)-based connected health applications is mainly driven by the need to tackle fraud issues, along with the imperative to improve patient privacy, safety, and personalized medical assistance. However, the advantages offered by the IoT platforms come with the burden of big data and its associated challenges in terms of computing complexity, bandwidth availability, and power consumption. This paper proposes a solution to tackle both privacy issues and big data transmission by incorporating the theory of compressive sensing and a simple, yet, efficient identification mechanism using the electrocardiogram (ECG) signal as a biometric trait. Moreover, the paper presents the hardware implementation of the proposed solution on a system-on-chip (SoC) platform with an optimized architecture to further reduce the hardware resource usage. First, we investigate the feasibility of compressing the ECG data while maintaining a high identification quality. The obtained results show a 98.88% identification rate using only a compression ratio of 30%. Furthermore, the proposed system has been implemented on a Zynq SoC using heterogeneous software/hardware solution, which is able to accelerate the software implementation by a factor of 7.73 with a power consumption of 2.318 W. |
راعي المشروع | ManuscriptreceivedJuly21,2018;revisedAugust19,2018;acceptedSeptember13,2018.DateofpublicationSeptember19,2018;dateofcurrentversionNovember13,2018.ThisworkwassupportedbytheQatarNationalResearchFund(amemberofQatarFoundation),throughtheNationalPrioritiesResearchProgram,underGrant9-114-2-055.TheassociateeditorcoordinatingthereviewofthispaperandapprovingitforpublicationwasDr.FerranReverter.(Correspondingauthor:XiaojunZhai.)H.Djelouat,M.A.Disi,A.Amira,andF.BensaaliarewiththeCollegeofEngineering,QatarUniversity,Doha,Qatar. |
اللغة | en |
الناشر | Institute of Electrical and Electronics EngineersInc. |
الموضوع | compressivesensing(CS) InternetofThings(IoT) patternrecognition reconstructionalgorithms zynqSoC |
النوع | Article |
الصفحات | 9629-9639 |
رقم العدد | 23 |
رقم المجلد | 18 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2427 items ]