• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Short-term planning of liquefied natural gas deliveries

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Msakni M.K.
    Haouari M.
    Metadata
    Show full item record
    Abstract
    The ability of a supplier of liquefied natural gas (LNG) to deliver cargoes at desired times, while effectively managing a fleet of cryogenic vessels can significantly impact its profits. We investigate in this paper an LNG short-term delivery planning problem by considering mandatory cargoes as well as optional cargoes to select, along with the scheduling of a heterogeneous vessel fleet with controllable cruising speeds. Several technical constraints are accommodated including time windows, berth availability, bunkering restrictions, inventory, liquefaction terminal storage capacity, maximum waiting time, and planned maintenance restrictions. The objective is to maximize the net profit. We propose a mixed-integer programming formulation that includes a polynomial number of variables and constraints and accommodates all of the problem features. Also, we describe an optimization-based variable neighborhood search procedure that embeds the proposed compact formulation. To assess the quality of the generated solutions, we propose a second valid formulation with an exponential number of decision variables and we solve its linear programming relaxation using column generation. We provide the results of extensive computational results that were carried out on a set of large-scale set of realistic instances, with up to 62 vessels and 160 cargoes, provided by a major LNG producer. These results provide evidence that the proposed improvement procedure yields high-quality solutions. 2018 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.trc.2018.03.013
    http://hdl.handle.net/10576/12079
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video