• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Towards Extended Bit Tracking for Scalable and Robust RFID Tag Identification Systems

    Thumbnail
    View/Open
    Towards Extended Bit Tracking for Scalable and Robust RFID Tag Identification Systems.pdf (2.250Mb)
    Date
    2018
    Author
    Fahim A.
    Elbatt T.
    Mohamed A.
    Al-Ali A.
    Metadata
    Show full item record
    Abstract
    The surge in demand for Internet of Things (IoT) systems and applications has motivated a paradigm shift in the development of viable radio frequency identification technology (RFID)-based solutions for ubiquitous real-Time monitoring and tracking. Bit tracking-based anti-collision algorithms have attracted considerable attention, recently, due to its positive impact on decreasing the identification time. We aim to extend bit tracking to work effectively over erroneous channels and scalable multi RFID readers systems. Towards this objective, we extend the bit tracking technique along two dimensions. First, we introduce and evaluate a type of bit errors that appears only in bit tracking-based anti-collision algorithms called false collided bit error in single reader RFID systems. A false collided bit error occurs when a reader perceives a bit sent by tag as an erroneous bit due to channel imperfection and not because of a physical collision. This phenomenon results in a significant increase in the identification delay. We introduce a novel, zero overhead algorithm called false collided bit error selective recovery tackling the error. There is a repetition gain in bit tracking-based anti-collision algorithms due to their nature, which can be utilized to detect and correct false collided bit errors without adding extra coding bits. Second, we extend bit tracking to 'error-free' scalable mutli-reader systems, while leaving the study of multi-readers tag identification over imperfect channels for future work. We propose the multi-reader RFID tag identification using bit tracking (MRTI-BT) algorithm which allows concurrent tag identification, by neighboring RFID readers, as opposed to time-consuming scheduling. MRTI-BT identifies tags exclusive to different RFIDs, concurrently. The concept of bit tracking and the proposed parallel identification property are leveraged to reduce the identification time compared to the state-of-The-Art. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2018.2832119
    http://hdl.handle.net/10576/12092
    Collections
    • Computer Science & Engineering [‎2491‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video