• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Silica and carbon decorated silica nanosheet impact on primary human immune cells

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Al Soubaihi R.M.
    Furesi G.
    Saoud K.M.
    Al-Muhtaseb S.A.
    Khatat A.E.
    Delogu L.G.
    Dutta J.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Silica nanosheets (SiO 2 NS) are considered to be a promising material in clinical practice for diagnosis and therapy applications. However, an appropriate surface functionalization is essential to guarantee high biocompatibility and molecule loading ability. Although SiO 2 NS are chemically stable, its effects on immune systems are still being explored. In this work, we successfully synthesized a novel 2D multilayer SiO 2 NS and SiO 2 NS coated with carbon (C/SiO 2 NS), and evaluated their impact on human Peripheral Blood Mononuclear Cells (PBMCs) and some immune cell subpopulations. We demonstrated that the immune response is strongly dependent on the surface functionalities of the SiO 2 NS. Ex vivo experiments showed an increase in biocompatibility of C/SiO 2 NS compared to SiO 2 NS, resulting in a lowering of hemoglobin release together with a reduction in cellular toxicity and cellular activation. However, none of them are directly involved in the activation of the acute inflammation process with a consequent release of pro-inflammatory cytokines. The obtained results provide an important direction towards the biomedical applications of silica nanosheets, rendering them an attractive material for the development of future immunological therapies.
    DOI/handle
    http://dx.doi.org/10.1016/j.colsurfb.2018.09.022
    http://hdl.handle.net/10576/12206
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video