• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Transition metal nanoparticles doped carbon paper as a cost-effective anode in a microbial fuel cell powered by pure and mixed biocatalyst cultures

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Mohamed H.O.
    Sayed E.T.
    Obaid M.
    Choi Y.-J.
    Park S.-G.
    Al-Qaradawi S.
    Chae K.-J.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The poor wettability and high cost of the carbonaceous electrodes materials prohibited the practical applications of microbial fuel cells (MFCs) on large scale. Here, a novel nanoparticles of metal sheathed with metal oxide is electrodeposited on carbon paper (CP) to introduce as high-performance anodes of microbial fuel cell (MFC). This thin layer of metal/metal oxide significantly enhance the microbial adhesion, the wettability of the anode surface and decrease the electron transfer resistance. The investigation of the modified CP anodes in an air-cathode MFCs fed by various biocatalyst cultures shows a significant improving in the MFC performance. Where, the generated power and current density was 140% and 210% higher as compared to the pristine CP. Mixed culture of exoelectrogenic microorganism in wastewater exhibited good performance and generated higher power and current density compared to yeast as pure culture. The excellent capacitance with a distinctive nanostructure morphology of the modified-CP open an avenues for practical applications of MFCs.
    DOI/handle
    http://dx.doi.org/10.1016/j.ijhydene.2018.09.199
    http://hdl.handle.net/10576/12235
    Collections
    • Chemistry & Earth Sciences [‎613‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video