عرض بسيط للتسجيلة

المؤلفSalahuddin T.
المؤلفHaouari F.
المؤلفIslam F.
المؤلفAli R.
المؤلفAl-Rasbi S.
المؤلفAboueata N.
المؤلفRezk E.
المؤلفJaoua A.
تاريخ الإتاحة2020-02-05T08:54:07Z
تاريخ النشر2018
اسم المنشورInformatics in Medicine Unlocked
المصدرScopus
الرقم المعياري الدولي للكتاب23529148
معرّف المصادر الموحدhttp://dx.doi.org/10.1016/j.imu.2018.07.002
معرّف المصادر الموحدhttp://hdl.handle.net/10576/12808
الملخصThe increase in biomedical data has given rise to the need for developing data sampling techniques. With the emergence of big data and the rise of popularity of data science, sampling or reduction techniques have been assistive to significantly hasten the data analytics process. Intuitively, without sampling techniques, it would be difficult to efficiently extract useful patterns from a large dataset. However, by using sampling techniques, data analysis can effectively be performed on huge datasets, to produce a relatively small portion of data, which extracts the most representative objects from the original dataset. However, to reach effective conclusions and predictions, the samples should preserve the data behavior. In this paper, we propose a unique data sampling technique which exploits the notion of formal concept analysis. Machine learning experiments are performed on the resulting sample to evaluate quality, and the performance of our method is compared with another sampling technique proposed in the literature. The results demonstrate the effectiveness and competitiveness of the proposed approach in terms of sample size and quality, as determined by accuracy and the F1-measure. 2018
راعي المشروعThis contribution was made possible by NPRP-07-794-1-145 grant from the Qatar National Research Fund (a member of Qatar foundation). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرElsevier Ltd
الموضوعBreast cancer
Data sampling
Formal concept analysis
Machine learning
العنوانBreast cancer image classification using pattern-based Hyper Conceptual Sampling method
النوعArticle
الصفحات176-185
رقم المجلد13
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة