Show simple item record

AuthorBhosale R.R.
Available date2020-03-03T06:19:05Z
Publication Date2018
Publication NameSolar Energy
ResourceScopus
ISSN0038092X
URIhttp://dx.doi.org/10.1016/j.solener.2018.02.054
URIhttp://hdl.handle.net/10576/13140
AbstractThe thermodynamic equilibrium and efficiency analysis of the solar-driven Al2O3-based CH4 reforming and H2O splitting process is performed in two sections: (1) Al and syngas producing open process (AS), and (2) Al, syngas, and H2 producing semi-open process (ASH). The equilibrium analysis indicate that with the rise in the CH4/Al2O3 molar ratio, formation of Al and syngas (via methanothermal reduction of Al2O3) improves and reaches its maximum value at 2530 K (in case of CH4/Al2O3 molar ratio = 3). The efficiency analysis (for both cycles) is carried out at a steady thermal reduction temperature (TH) equal to 2530 K. In case of the ASH process, the water-splitting reactor is employed for the production of H2 and the effect of water splitting temperature (TL) on the process efficiency values is explored. Obtained results shows that the solar-to-fuel energy conversion efficiency in case of the ASH process is higher as compared to the AS process. Furthermore, this efficiency (in case of the ASH process) can be increased up to 50.7% via heat recuperation.
SponsorThis publication was made possible by the NPRP grant ( NPRP8-370-2-154 ) from the Qatar National Research Fund (a member of Qatar Foundation).
Languageen
PublisherElsevier Ltd
SubjectAl2O3
H2
Methane reforming
Solar fuels
Syngas
Thermodynamics
TitleSolar driven two-step CH4 reforming and H2O splitting using Al2O3 for Co-production of Al, syngas, and H2
TypeArticle
Pagination232 - 241
Volume Number172
dc.accessType Abstract Only


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record