An Ensemble Learning Method Based on Random Subspace Sampling for Palmprint Identification
المؤلف | Rida I. |
المؤلف | Maadeed S.A. |
المؤلف | Jiang X. |
المؤلف | Lunke F. |
المؤلف | Bensrhair A. |
تاريخ الإتاحة | 2020-03-03T06:19:33Z |
تاريخ النشر | 2018 |
اسم المنشور | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 15206149 |
الملخص | Palmprint recognition is an important and widely used biometric modality with high reliability, stability and user acceptability. In this paper we propose a simple and effective ensemble learning method for palmprint identification based on Random Subspace Sampling (RSS). To achieve it, we rely on 2D-PCA to build the random subspaces. As 2D-PCA is an unsurpevised technique, features are extracted in each subspace using 2D-LDA. A simple 1-Nearest Neighbor classifier is associated to each subspace, the final decision rule being obtained by majority voting rule. The experimental results on multispectral and PolyU palmprint datasets show very encouraging performances compared to state-of-the-art techniques. |
راعي المشروع | This publication was made possible using a grant from the Qatar National Research Fund through National Priority Research Program (NPRP) No. 7-1711-1-312. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the Qatar National Research Fund or Qatar University. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Biometrics Ensemble learning Palmprint Random subspace sampling |
النوع | Conference |
الصفحات | 2047 - 2051 |
رقم المجلد | 2018-April |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2426 items ]