Deep learning in classifying sleep stages
المؤلف | Al-Meer M.H. |
المؤلف | Al Mamun M.D.A. |
تاريخ الإتاحة | 2020-03-03T06:19:33Z |
تاريخ النشر | 2018 |
اسم المنشور | 2018 13th International Conference on Digital Information Management, ICDIM 2018 |
المصدر | Scopus |
الملخص | This paper presents a deep feed-forward neural network classifier to automatically classify the stages of sleep using raw data taken from a single electropalatogram channel (Fpz-Cz). No features are extracted at all from the data, and the network can classify the five sleep stages: waking, Nl, N2, N3, N4, and rapid eye movement. The network has three layers, takes as an input a l-s epochs to be classified, and requires no signal pre-processing nor feature extraction. We trained and evaluated our system using DeepLearning4J, the free Java framework for test data taken from PhysioNet's Polysomnography Sleep database. An accuracy of 0.99 within a constrained environment has been reached. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Deep Learning Machine Learning PSG Sleep Stages |
النوع | Conference |
الصفحات | 17-Dec |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2426 items ]