Deep learning in classifying sleep stages
| المؤلف | Al-Meer M.H. |
| المؤلف | Al Mamun M.D.A. |
| تاريخ الإتاحة | 2020-03-03T06:19:33Z |
| تاريخ النشر | 2018 |
| اسم المنشور | 2018 13th International Conference on Digital Information Management, ICDIM 2018 |
| المصدر | Scopus |
| الملخص | This paper presents a deep feed-forward neural network classifier to automatically classify the stages of sleep using raw data taken from a single electropalatogram channel (Fpz-Cz). No features are extracted at all from the data, and the network can classify the five sleep stages: waking, Nl, N2, N3, N4, and rapid eye movement. The network has three layers, takes as an input a l-s epochs to be classified, and requires no signal pre-processing nor feature extraction. We trained and evaluated our system using DeepLearning4J, the free Java framework for test data taken from PhysioNet's Polysomnography Sleep database. An accuracy of 0.99 within a constrained environment has been reached. |
| اللغة | en |
| الناشر | Institute of Electrical and Electronics Engineers Inc. |
| الموضوع | Deep Learning Machine Learning PSG Sleep Stages |
| النوع | Conference |
| الصفحات | 17-Dec |
الملفات في هذه التسجيلة
| الملفات | الحجم | الصيغة | العرض |
|---|---|---|---|
|
لا توجد ملفات لها صلة بهذه التسجيلة. |
|||
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2489 items ]

