• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robust feature point detectors for car make recognition

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Al-Maadeed S.
    Boubezari R.
    Kunhoth S.
    Bouridane A.
    Metadata
    Show full item record
    Abstract
    An Automatic Vehicle Make and Model Recognition (AVMMR) system can be a useful add-on tool to Automatic Number Plate Recognition (ANPR) to address potential car cloning, including intelligence collection by the police to outline past and recent car movement and travel patterns. Although several AVMMR systems have been proposed, the approaches perform sub-optimally under various environmental conditions, including occlusion and/or poor lighting distortions. This paper studies the effectiveness of deploying robust local feature points that can address these limitations. The proposed methods utilize a modification of two-dimensional feature points such as SIFT, SURF, etc. and their combinations. When SIFT gets combined with the multi-scale Harris/multi-scale Hessian methods, it could outperform existing approaches. Experimental evaluations using 4 different benchmark datasets are conducted to demonstrate the robustness of the proposed techniques and their abilities to detect and identify car makes and models under various environmental conditions. SIFT- DoG, SIFT- multiscale Hessian, and SIFT- multiscale Harris are shown to yield the best results for our datasets with higher recognition rates than those achieved with other existing methods in the literature. Therefore, it can then be concluded that the combination of certain covariant feature detectors and descriptors can outperform other methods.
    DOI/handle
    http://dx.doi.org/10.1016/j.compind.2018.04.014
    http://hdl.handle.net/10576/13188
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video