عرض بسيط للتسجيلة

المؤلفSaid A.B.
المؤلفMohamed A.
المؤلفElfouly T.
المؤلفAbualsaud K.
المؤلفHarras K.
تاريخ الإتاحة2020-03-03T06:19:37Z
تاريخ النشر2018
اسم المنشور2018 14th International Wireless Communications and Mobile Computing Conference, IWCMC 2018
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/IWCMC.2018.8450434
معرّف المصادر الموحدhttp://hdl.handle.net/10576/13225
الملخصIn the context of mobile Health (mHealth) applications, data are prone to several sources of contamination which would lead to false interpretation and misleading classification results. In this paper, a robust deep learning approach with low rank model is proposed to classify mHealth vital signs. Further-more, we propose using the Schatten-p norm instead of the classic nuclear norm since it has shown better recovery performance for several applications. We conduct a comprehensive study where we compare our method to the state-of-art methods and evaluate its performance with respect to the key system parameters. Our findings show indeed that combining deep network with dictionary learning model is effective for vital signs classification even in presence of 50% corruption with 8% improvement over the closest performance.
راعي المشروعThis publication was made possible by NPRP grant #7-684-1-127 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعclassification
deep learning
low rank
mHealth
العنوانUAV-based Semi-Autonomous Data Acquisition and Classification
النوعConference
الصفحات358 - 363
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة