Design and Performance Evaluation of a Committee Machine for Gas Identification
المؤلف | Akbar M.A. |
المؤلف | Djelouat H. |
المؤلف | Ait Si Ali A. |
المؤلف | Amira A. |
المؤلف | Bensaali F. |
المؤلف | Benammar M. |
المؤلف | Bermak A. |
تاريخ الإتاحة | 2020-03-04T07:41:31Z |
تاريخ النشر | 2018 |
اسم المنشور | Lecture Notes in Networks and Systems |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 23673370 |
الملخص | Selecting the best classifier plays a significant role in the current electronic nose systems that can be deployed for gas applications. For this purpose, this paper presents an empirical study on the performance of three different classifiers, namely, binary decision tree (BDT), K-nearest neighbours (KNN) and extended nearest neighbours (ENN) on gas identification. It has been observed that with BDT and ENN a maximum classification accuracy of up to 96.4 % and 96.7 % can be obtained, respectively, whereas in the case of KNN up to 97.0 % accuracy can be achieved. In addition to the individual classifiers, a committee machine (CM) based on the three classifiers has been designed, with and without feedback mechanism to determine the improvement gained by combining these classifiers. The performance attained by the CM with feedback is 97.44 % and it is slightly better than the one without feedback, that is 97.2 %. |
راعي المشروع | This paper was made possible by National Priorities Research Program (NPRP) grant No. 5-080-2-028 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. |
اللغة | en |
الناشر | Springer |
الموضوع | Binary Decision Tree (BDT) Classifiers Committe Machine (CM) Extended Nearest Neighbours (ENN) K-Nearest Neighbours (KNN) |
النوع | Book chapter |
الصفحات | 936-945 |
رقم المجلد | 16 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]