• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Magnetorheological damper with external excitation for more efficient control of vehicles? dynamics

    Thumbnail
    Date
    2018
    Author
    Sassi S.
    Sassi A.
    Cherif K.
    Tarlochan F.
    Metadata
    Show full item record
    Abstract
    This article presents a new concept design for magnetorheological dampers, where the excitation circuit and magnetic field are applied from outside the magnetorheological chamber. This magnetorheological damper was designed and built to decrease the intrusive manufacturing operations and to maximize the working efficiency. The experimental tests made on the first prototype featuring this new technology was promising. The excitation of a set of 12 coils surrounding the body of the damper, by an electric current of 5 A, managed to increase the damping coefficient by up to 75%. A similar performance could be obtained by a current 9.4 times lower if the magnetic circuit is designed correctly. Compared to other devices, the actual design tolerates more the temperature elevation caused by the feeding of coils with high-intensity current, just because the heat is radiated outwards instead of being transferred directly to the magnetorheological fluid like in conventional designs. Finally, the numerical simulations made on Matlab show that the new magnetorheological damper, when mounted on a commercial vehicle, can considerably enhance its dynamic behavior and bring it back quickly to its stable position when the tires hit a bump on the road. ? The Author(s) 2018.
    DOI/handle
    http://dx.doi.org/10.1177/1045389X18781038
    http://hdl.handle.net/10576/13326
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]
    • Transportation [‎90‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video