Deep neural network-aided Gaussian message passing detection for ultra-reliable low-latency communications
المؤلف | Guo J. |
المؤلف | Song B. |
المؤلف | Chi Y. |
المؤلف | Jayasinghe L. |
المؤلف | Yuen C. |
المؤلف | Guan Y.L. |
المؤلف | Du X. |
المؤلف | Guizani M. |
تاريخ الإتاحة | 2020-03-18T10:47:16Z |
تاريخ النشر | 2019 |
اسم المنشور | Future Generation Computer Systems |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 0167739X |
الملخص | Ultra-reliable low-latency communications (URLLC) is a key technology in 5G supporting real-time multimedia services, which requires a low-cost signal recovery technology in the physical layer. A kind of well-known low-complexity signal detection is message passing algorithm (MPA) based on factor graph. However, reliability and robustness of MPA are deteriorated when there are cycles in factor graph. To address this issue, we propose two novel Gaussian message passing (GMP) algorithms with the aid of deep neural network (DNN), in which the network architectures consist of two DNNs associated with detections for mean and variance of the signal. Particularly, the network architecture is constructed by transforming the factor graph and message update functions of the original GMP algorithm from node-type into edge-type. Then, weights and bias parameters are assigned in the network architecture. With the aid of deep learning methods, the optimal weights and bias parameters are obtained. Numerical results demonstrate that two proposed DNN-aided GMP algorithms can significantly improve the convergence of original GMP algorithm and also achieve robust performances in the cases without prior information. |
راعي المشروع | This work has been supported by the National Natural Science Foundation of China (No. 61772387 , 61802296 , 61750110529 ), China Postdoctoral Science Foundation Grant (No. 2017M620438 ), the Fundamental Research Funds for the Central Universities ( JB180101 ), Fundamental Research Funds of Ministry of Education and China Mobile ( MCM20170202 ), and also supported by the ISN State Key Laboratory . |
اللغة | en |
الناشر | Elsevier B.V. |
الموضوع | Deep neural network Loopy factor graph Message passing Signal recovery URLLC |
النوع | Article |
الصفحات | 629-638 |
رقم المجلد | 95 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2426 items ]