A Deep Learning Based Automatic Severity Detector for Diabetic Retinopathy
Author | AlSaad R. |
Author | Al-Maadeed S. |
Author | Al Mamun M.A. |
Author | Boughorbel S. |
Available date | 2020-03-29T12:15:10Z |
Publication Date | 2018 |
Publication Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
Resource | Scopus |
ISSN | 3029743 |
Abstract | Automated Diabetic Retinopathy (DR) screening methods with high accuracy have the strong potential to assist doctors in evaluating more patients and quickly routing those who need help to a specialist. In this work, we used Deep Convolutional Neural Network architecture to diagnosing DR from digital fundus images and accurately classifying its severity. We train this network using a graphics processor unit (GPU) on the publicly available Kaggle dataset. We used Theano, Lasagne, and cuDNN libraries on two Amazon EC2 p2.xlarge instances and demonstrated impressive results, particularly for a high-level classification task. On the dataset of 30,262 training images and 4864 testing images, our model achieves an accuracy of 72%. Our experimental results showed that increasing the batch size does not necessarily speed up the convergence of the gradient computations. Also, it demonstrated that the number and size of fully connected layers do not have a significant impact on the performance of the model. |
Sponsor | This work was supported by Sidra Medicine (authors RA and SB), as well as a grant from the Qatar National Research Fund through National Priority Research Program (NPRP) No. 6-249-1-053 (authors SA and MA). |
Language | en |
Publisher | Springer Verlag |
Subject | Convolutional Neural Networks Deep learning Diabetic retinopathy Medical imaging |
Type | Conference |
Pagination | 64-76 |
Volume Number | 10934 LNAI |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Computer Science & Engineering [2426 items ]