Insights into the isotherm and kinetic models for the coadsorption of pharmaceuticals in the absence and presence of metal ions: A review
Abstract
Pharmaceuticals are a wide class of emerging pollutants due to their continuous and the increasing consumption of users. These pollutants are usually found in the real environment as mixtures alone or with metal ions. Thus, the migration risk increases, which complicates the removal of pharmaceuticals because of the combined and synergistic effects. The focus of treatment of pharmaceutical mixtures and their coexistence with metals is of considerable importance. For this purpose, adsorption has been efficiently applied to several studies for the treatment of such complex systems. In this article, the coadsorption behavior of pharmaceuticals in the absence and existence of metals on several adsorbents has been reviewed. The adsorption isotherms and kinetics of these two systems have been analyzed using different models and discussed. Important challenges and promising routes are suggested for the future development of the coadsorption of the studied systems. This article provides an overview on the most utilized and effective adsorbents, widely studied adsorbates, best applied isotherm and kinetic models, and competitive effect in coadsorption of pharmaceuticals, both with and without metals. - 2019 Elsevier Ltd
Collections
- Chemical Engineering [1174 items ]