• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    First-principle studies on the gas phase OH-initiated oxidation of O-toluidine

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Abdel-Rahman M.A.
    Shibl M.F.
    El-Demerdash S.H.
    El-Nahas A.M.
    Metadata
    Show full item record
    Abstract
    In the present work, the gas phase reaction of OH radical initiated O-toluidine (OTOD) oxidation is investigated at ROCBS-QB3. Different pathways for OH radical additions to the benzene ring sites and H-atom abstractions are explored in details. At 200 K, the oxidation mechanism of OTOD is thoroughly dominated by the OH-addition to the aromatic ring, whereas the main favorable route is the OH addition to C2 atom with a branching ratio of 52.76%. Raising temperature to 1000 K, the total abstraction of amine's hydrogens becomes the main oxidation pathway for OTOD with contributions of 29.29%. The atmospheric lifetimes of aniline and OTOD are calculated to be 20.74 and 11.23 min., respectively. The fate of OTOD-OH2 (P2) adduct with atmospheric O2 molecule is inspected using the unimolecular Rice-Ramsperger-Kassel-Marcus (RRKM-ME) to verify our results at transition state theory (TST) and shows pressure and temperature dependence of the secondary oxidation mechanism. - 2019 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.comptc.2019.112634
    http://hdl.handle.net/10576/13567
    Collections
    • Chemistry & Earth Sciences [‎608‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video