Thermocatalytic splitting of CO2 using sol-gel synthesized Co-ferrite redox materials
View/ Open
Publisher version (Check access options)
Check access options
Date
2019Metadata
Show full item recordAbstract
In this investigation, the redox reactivity of CoxFe3−xO4 materials was examined in multiple thermochemical CO2 splitting cycles. Sol-gel method was applied for the synthesis of CoxFe3−xO4 materials and the prepared gels of CoxFe3−xO4 materials were aged, dried, and further annealed up to 600 °C in air. The characterization results indicate formation of phase pure CoxFe3−xO4 materials. The thermal reduction (at 1400 °C for 60 min in the presence of inert Ar) and CO2 splitting (at 1000 °C for 30 min in the presence of CO2/Ar mixture) aptitude of each CoxFe3−xO4 material was estimated by using a high temperature set-up consisting of a thermogravimetric analyzer. From the TGA analysis, it was understood that the amounts of O2 released and CO produced by CoFe2O4 was higher and stable as compared to the other Co-ferrite materials. CoFe2O4 was capable of producing 76.2 µmol of O2/g·cycle and 139 µmol of CO/g·cycle in ten thermochemical. The thermal reduction and CO2 splitting aptitude of the CoFe2O4 was spotted to be greater than the CeO2 material.
Collections
- Chemical Engineering [1174 items ]