• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Penalized Conway-Maxwell-Poisson regression for modelling dispersed discrete data: The case study of motor vehicle crash frequency

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Abdella G.M.
    Kim J.
    Al-Khalifa K.N.
    Hamouda A.M.
    Metadata
    Show full item record
    Abstract
    Statistical modelling of road crashes has been of extreme interest to researchers over the last decades. Such models are necessary for the investigation of the opportunities for road safety improvement. The motor vehicle crash frequency (MVC-F) is probably the most important count of road crashes. In practice, like many of other discrete variables, this count is often diagnosed with over- or underdispersion, i.e. the variance is greater or less than the mean. The traditional regression models, especially those based on the Poisson distribution, are inefficient in modelling dispersed count data. On the contrary, the Conway-Maxwell-Poisson (COM-Poisson) distribution has been proven powerful in modelling count data with a wide range of dispersion. In crash data modelling, many situations may give rise to collinearity between contributory crash factors. Under this situation, the maximum likelihood estimates of the coefficients of the COM-Poisson GLM become increasingly unreliable as the collinearity among the model predictors increases. This paper addresses this issue and proposes a penalized likelihood scheme to be used with the COM-Poisson GLM regression for improving its prediction performance. For better GLM regression output, we suggest implementing the penalized COM-Poisson GLM regression under a K- fold cross-validation framework. A real-world crash example is provided, showing the performance of the penalized COM-Poisson GLM regression compared to the Poisson and the classical COM-Poisson GLM regressions. - 2019 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.ssci.2019.06.036
    http://hdl.handle.net/10576/13616
    Collections
    • Mechanical & Industrial Engineering [‎1507‎ items ]
    • Traffic Safety [‎163‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video