• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Using Bloom Filter to Generate a Physiological Signal-Based Key for Wireless Body Area Networks

    Thumbnail
    Date
    2019
    Author
    Yao X.
    Liao W.
    Du X.
    Cheng X.
    Guizani M.
    Metadata
    Show full item record
    Abstract
    Wireless body area networks (WBANs) are often used to provide communication services for the data from the body. Since the data in WBANs are always closely related to individuals, they need to be kept secret with integrity. Key management is critical to data security. The resource-constraint biosensors make it difficult for traditional key management mechanisms to work well in WBAN. Using physiological signals to realize key agreement has the advantages of low overhead, timely key updating, and no key material predeployment and key store requirements, etc. The existing physiological signal-based key agreement schemes are always unable to balance the overhead and security well. To overcome these problems, we make two efforts. One is that we try to enhance the randomness of the interpulse-interval (IPI) from electrocardiograms in the process of digitizing physiological signals. And the other is that we attempt to use the Bloom filter rather than lots of chaff points to conceal the features exchanged for key agreement. The comparative analysis and experiments indicate that the proposed scheme can simultaneously achieve high security strength and low overhead. - 2014 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2019.2939144
    http://hdl.handle.net/10576/13622
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video