Real-time data center's telemetry reduction and reconstruction using markov chain models
المؤلف | Baig S.-U.-R. |
المؤلف | Iqbal W. |
المؤلف | Berral J.L. |
المؤلف | Erradi A. |
المؤلف | Carrera D. |
تاريخ الإتاحة | 2020-04-01T06:54:49Z |
تاريخ النشر | 2019 |
اسم المنشور | IEEE Systems Journal |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 19328184 |
الملخص | Large-scale data centers are composed of thousands of servers organized in interconnected racks to offer services to users. These data centers continuously generate large amounts of telemetry data streams (e.g., hardware utilization metrics) used for multiple purposes, including resource management, workload characterization, resource utilization prediction, capacity planning, and real-time analytics. These telemetry streams require costly bandwidth utilization and storage space, particularly at medium-long term for large data centers. This paper addresses this problem by proposing and evaluating a system to efficiently reduce bandwidth and storage for telemetry data through real-time modeling using Markov chain based methods. Our proposed solution was evaluated using real telemetry datasets and compared with polynomial regression methods for reducing and reconstructing data. Experimental results show that data can be lossy compressed up to 75% for bandwidth utilization and 95.33% for storage space, with reconstruction accuracy close to 92%. - 2007-2012 IEEE. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Data center monitoring data reconstruction data reduction Markov chain models (MMs) polynomial regression (PR) real time telemetry |
النوع | Article |
الصفحات | 4039-4050 |
رقم العدد | 4 |
رقم المجلد | 13 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2427 items ]