Adaptive Prediction Models for Data Center Resources Utilization Estimation
المؤلف | Baig S.-U.-R. |
المؤلف | Iqbal W. |
المؤلف | Berral J.L. |
المؤلف | Erradi A. |
المؤلف | Carrera D. |
تاريخ الإتاحة | 2020-04-01T06:54:49Z |
تاريخ النشر | 2019 |
اسم المنشور | IEEE Transactions on Network and Service Management |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 19324537 |
الملخص | Accurate estimation of data center resource utilization is a challenging task due to multi-tenant co-hosted applications having dynamic and time-varying workloads. Accurate estimation of future resources utilization helps in better job scheduling, workload placement, capacity planning, proactive auto-scaling, and load balancing. The inaccurate estimation leads to either under or over-provisioning of data center resources. Most existing estimation methods are based on a single model that often does not appropriately estimate different workload scenarios. To address these problems, we propose a novel method to adaptively and automatically identify the most appropriate model to accurately estimate data center resources utilization. The proposed approach trains a classifier based on statistical features of historical resources usage to decide the appropriate prediction model to use for given resource utilization observations collected during a specific time interval. We evaluated our approach on real datasets and compared the results with multiple baseline methods. The experimental evaluation shows that the proposed approach outperforms the state-of-the-art approaches and delivers 6% to 27% improved resource utilization estimation accuracy compared to baseline methods. - 2004-2012 IEEE. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Data center data classification dynamic prediction model feature extraction modeling and prediction resource management |
النوع | Article |
الصفحات | 1681-1693 |
رقم العدد | 4 |
رقم المجلد | 16 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2426 items ]