• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Methodology for daylight optimisation of high-rise buildings in the dense urban district using overhang length and glazing type variables with surrogate modelling

    Thumbnail
    View/Open
    Ekici_2019_J._Phys.__Conf._Ser._1343_012133.pdf (1.465Mb)
    Date
    2019
    Author
    Ekici B.
    Kazanasmaz T.
    Turrin M.
    Tasgetiren M.F.
    Sariyildiz I.S.
    Metadata
    Show full item record
    Abstract
    Urbanization and population growth lead to the construction of higher buildings in the 21st century. This causes an increment on energy consumption as the amount of constructed floor areas is rising steadily. Integrating daylight performance in building design supports reducing the energy consumption and satisfying occupants' comfort. This study presents a methodology to optimise the daylight performance of a high-rise building located in a dense urban district. The purpose is to deal with optimisation problems by dividing the high-rise building into five zones from the ground level to the sky level, to achieve better daylight performance. Therefore, the study covers five optimization problems. Overhang length and glazing type are considered to optimise spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE). A total of 500 samples in each zone are collected to develop surrogate models. A self-adaptive differential evolution algorithm is used to obtain near-optimal results for each zone. The developed surrogate models can estimate the metrics with minimum 98.25% R2 which is calculated from neural network prediction and Diva simulations. In the case study, the proposed methodology improves daylight performance of the high-rise building, decreasing ASE by approx. 27.6% and increasing the sDA values by around 88.2% in the dense urban district. - Published under licence by IOP Publishing Ltd.
    DOI/handle
    http://dx.doi.org/10.1088/1742-6596/1343/1/012133
    http://hdl.handle.net/10576/13690
    Collections
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video