Show simple item record

AuthorTakalkar G.
AuthorBhosale R.R.
AuthorAlMomani F.
Available date2020-04-01T06:59:43Z
Publication Date2019
Publication NameFuel
ResourceScopus
ISSN162361
URIhttp://dx.doi.org/10.1016/j.fuel.2019.115834
URIhttp://hdl.handle.net/10576/13696
AbstractThis work reports the investigation of the redox reactivity of Ce0.75Zr0.2M0.05O2-δ (M = Cr, Mn, Fe, Ni, Co, Zn) materials towards thermochemical CO2 splitting (CS) cycle. The Ce0.75Zr0.2M0.05O2-δ materials were prepared via co-precipitation method and the derived materials were characterized to determine the phase/elemental composition and microstructural morphology. The powder X-ray diffraction (PXRD) analysis indicate formation of phase pure Ce0.75Zr0.2M0.05O2-δ materials with no metal or metal oxide impurities. The analysis performed using scanning electron microscopy confirms production of agglomerated roundish particles of Ce0.75Zr0.2M0.05O2-δ materials. Synthesized Ce0.75Zr0.2M0.05O2-δ materials were further tested, using a thermogravimetric analyzer (TGA), to determine their redox reactivity towards CS reactions. The obtained results indicate that all the Ce0.75Zr0.2M0.05O2-δ materials possess better thermal reduction (TR) and CS aptitude as compared to previously studied phase pure ceria and transition metal doped ceria oxides. The obtained results further indicate that, except for Ce0.75Zr0.2Mn0.05O2-δ material, all the other Ce0.75Zr0.2M0.05O2-δ materials were capable of releasing higher amounts of O2 during TR performed at 1400 °C as compared to Ce0.75Zr0.25O2-δ. Overall in ten thermochemical cycles, the Ce0.75Zr0.2Zn0.05O2-δ showed the highest O2 releasing capacity (105.1 μmol/g·cycle) and the Ce0.75Zr0.2Ni0.05O2-δ indicated the maximum CO production aptitude (170.5 μmol/g·cycle).
SponsorThis publication was made possible by the NPRP grant ( NPRP8-370-2-154 ) from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of author(s).
Languageen
PublisherElsevier Ltd
SubjectCeria-zirconia solid solution
Co-precipitation method
CO2 splitting
Redox reactivity
Solar fuels
Thermochemical cycles
TitleThermochemical splitting of CO2 using Co-precipitation synthesized Ce0.75Zr0.2M0.05O2-δ (M = Cr, Mn, Fe, CO, Ni, Zn) materials
TypeArticle
Volume Number256
dc.accessType Abstract Only


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record