• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bimetallic palladium-supported halloysite nanotubes for low temperature CO oxidation: Experimental and DFT insights

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Ahmad Y.H.
    Mohamed A.T.
    Hassan W.M.I.
    Soliman A.
    Mahmoud K.A.
    Aljaber A.S.
    Al-Qaradawi S.Y.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The design and fabrication of novel metal-supported catalysts for energy conversion and heterogeneous catalysis is a pivotal theme. Herein, we present the synthesis of bimetallic palladium nanoalloys supported on halloysite nanotubes, PdM@HNTs, where M = Co, Cu, and Ni and their catalytic performance towards CO oxidation. The synthesis procedure involves simple co-reduction of the metals precursors using NaBH4 on halloysite nanotubes support. The synthesized catalysts retain the tubular morphology of halloysite support with surface area of 90–107 m2 g−1. Transmission electron microscopy (TEM) revealed smaller size for bimetallic nanoparticles (6–8 nm) compared to Pd (14 nm). PdNi displayed the highest catalytic activity towards CO oxidation. Moreover, PdCo and PdNi demonstrated enhanced CO oxidation kinetics compared to PdCu and PdNi as revealed from the calculated activation energies. DFT calculations revealed that the order of catalytic activity is PdNi > PdCo > PdCu > Pd which is in agreement with the experimental results and that the adsorption energy of CO2 on the different catalysts has no apparent role in the whole activity of the catalyst. In conclusion, PdM@HNTs catalysts expressed homogeneous distribution for metallic nanoparticles as well as high dispersion and expressed promising potential to be applied in real flare control processes.
    DOI/handle
    http://dx.doi.org/10.1016/j.apsusc.2019.07.009
    http://hdl.handle.net/10576/13807
    Collections
    • Chemistry & Earth Sciences [‎601‎ items ]
    • GPC Research [‎501‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video