• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of fuel content on the electrocatalytic methanol oxidation performance of Pt/ZnO nanoparticles synthesized by solution combustion

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Matin M.A.
    Saad M.A.H.S.
    Kumar A.
    Al-Marri M.J.
    Mansour S.A.
    Metadata
    Show full item record
    Abstract
    We report the effect of combustion synthesis conditions on Pt nanoparticle (NP) supported on ZnO (Pt/ZnO) electrocatalysts for methanol oxidation reaction (MOR). The Pt/ZnO NPs are prepared by solution combustion synthesis (SCS) using metal nitrate precursors and glycine fuel, which is varied with a fixed Pt:Zn ratio at 1:1 for fuel-high (Pt/ZnO (H)) and fuel-low (Pt/ZnO (L)) electrocatalysts. X-ray diffractometry, transmission electron microscopy and scanning electron microscopy are used for crystallite size, particle distribution and elemental composition studies, respectively. High angle annular dark field-scanning transmission electron microscopy attached to energy dispersive X-ray spectroscopy was used for elemental distribution in Pt/ZnO NPs and X-ray photoelectron spectroscopy (XPS) was used to identify the surface composition and electronic state of the elements. Cyclic voltammetry is applied for the electrocatalysis of CH3OH in an alkaline medium, which reveals that Pt/ZnO (H) system has an improved MOR activity in comparison to commercial Pt/C. The onset potential of MOR on Pt/ZnO is earlier than that of Pt/C. The stability test conducted by chronoamperometry on Pt/ZnO and Pt/C shows a stable high current density for Pt/ZnO (H) compared to Pt/C and Pt/ZnO (L). The crystallite size, surface morphology and the electrochemical properties of Pt/ZnO samples are affected by the variation in the fuel amount during synthesis. - 2019 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.apsusc.2019.06.213
    http://hdl.handle.net/10576/13817
    Collections
    • Chemical Engineering [‎1249‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video