• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Solar thermocatalytic conversion of CO2 using PrxSr(1?x)MnO3?? perovskites

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Takalkar G.
    Bhosale R.R.
    Metadata
    Show full item record
    Abstract
    The prime aim of this study was to examine the thermal reduction (TR) and CO2 splitting (CS) capacity of each PrxSr(1?x)MnO3?? (PSM) perovskite. A solution combustion synthesis (SCS) approach was applied for the synthesis of PSM perovskites wherein glycine was utilized as the fuel. As-synthesized PSM perovskites were first annealed up to 1000 °C in air and the calcined powder obtained was further analyzed using multiple characterization techniques. A high-temperature experimental set-up consisting of a Setaram SETSYS Evolution thermogravimetric analyzer (TGA) was developed and utilized for the examination of the SCS derived PSM perovskites towards thermochemical CO2 splitting reactions. The obtained results indicate that the lower Pr and higher Sr atomic concentrations are beneficial to achieve the maximum amounts of O2 released (nO2) and CO produced (nCO) in each thermochemical cycle. Based on the average nO2 and nCO, the Pr0.18Sr0.80Mn0.99O2.951 (PSM2) and Pr0.39Sr0.63Mn0.98O2.979 (PSM4) were identified as the best choices for the solar thermochemical conversion of CO2. When compared with the CeO2 material (which is considered as a yardstick), the average nO2 and nCO by all the PSM perovskites was considerably higher for each cycle. - 2019 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.fuel.2019.115624
    http://hdl.handle.net/10576/13831
    Collections
    • Chemical Engineering [‎1231‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video