• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An exact approach for the multicommodity network optimization problem with a step cost function

    Thumbnail
    Date
    2019
    Author
    Mejri I.
    Haouari M.
    Layeb S.B.
    Mansour F.Z.
    Metadata
    Show full item record
    Abstract
    We investigate the Multicommodity Network Optimization Problem with a Step Cost Function (MNOP-SCF) where the available facilities to be installed on the edges have discrete step-increasing cost and capacity functions. This strategic long-term planning problem requires installing at most one facility capacity on each edge so that all the demands are routed and the total installation cost is minimized. We describe a path-based formulation that we solve exactly using an enhanced constraint generation based procedure combined with columns and new cuts generation algorithms. The main contribution of this work is the development of a new exact separation model that identifies the most violated bipartition inequalities coupled with a knapsack-based problem that derives additional cuts. To assess the performance of the proposed approach, we conducted computational experiments on a large set of randomly generated instances. The results show that it delivers optimal solutions for large instances with up to 100 nodes, 600 edges, and 4950 commodities while in the literature, the best developed approaches are limited to instances with 50 nodes, 100 edges, and 1225 commodities. - EDP Sciences, ROADEF, SMAI 2019.
    DOI/handle
    http://dx.doi.org/10.1051/ro/2019017
    http://hdl.handle.net/10576/13963
    Collections
    • Mechanical & Industrial Engineering [‎1483‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video