• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The electronic origin of the ground state spectral features and excited state deactivation in cycloalkanones: the role of intermolecular H-bonding in neat and binary mixtures of solvents

    Thumbnail
    View/Open
    The electronic origin of the ground state spectral features and excited state deactivation in cycloalkanones the role of intermolecular H-bonding in neat and binary mixtures of solvents.pdf (957.6Kb)
    Date
    2019
    Author
    Al-Ansari I.A.Z.
    Metadata
    Show full item record
    Abstract
    In this study, a D-A cycloalkanone (K1) has been investigated by steady state absorption and fluorescence in neat solvents and in three binary mixtures of nonpolar aprotic/polar protic, polar aprotic/polar protic, and polar protic/polar protic solvents. The experimental findings were complemented by density functional theory (DFT), time-dependent density functional theory (TD-DFT), and NBO quantum-mechanical calculations. Experimentally, effective changes in absorption and fluorescence were observed by solute-solvent interaction. The binary K1-solvent1-solv2 configuration, modeled at the B3LYP-DFT level, confirms involvement of inter-molecular H-bonding with the carbonyl C=O in the fluorescence deactivation process (quenching). This is supported by considerable electron delocalization from C=O to the solvent's hydroxyl (nO????*H-O). This type of hyperconjugation was found to be the main driver for solute-solvent stabilization.
    DOI/handle
    http://dx.doi.org/10.1007/s00894-019-4015-6
    http://hdl.handle.net/10576/13971
    Collections
    • Chemistry & Earth Sciences [‎601‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video