عرض بسيط للتسجيلة

المؤلفDurou A.
المؤلفAl-Maadeed S.
المؤلفAref I.
المؤلفBouridane A.
المؤلفElbendak M.
تاريخ الإتاحة2020-04-09T12:27:28Z
تاريخ النشر2019
اسم المنشورProceedings of 12th International Conference on Global Security, Safety and Sustainability, ICGS3 2019
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/ICGS3.2019.8688032
معرّف المصادر الموحدhttp://hdl.handle.net/10576/13990
الملخصDuring the past few years, writer identification has attracted significant interest due to its real-life applications including document analysis, forensics etc. Machine learning algorithms have played an important role in the development of writer identification systems demonstrating very effective performance results. Recently, the emergence of deep learning has led to various system in computer vision and pattern recognition applications. Therefore, this work aims to assess and compare the performance between one of the deep learning algorithms, AlexNet model, with two of the most effective machine learning classification approaches: Support Vector Machine (SVM) and K-Nearest-Neighbour (KNN). The evaluation has been conducted using both IAM dataset for English handwriting and ICFHR 2012 dataset for Arabic handwriting.
راعي المشروعThis work is supported by the Qatar National Research Fund through National Priority Research Program (NPRP) No 7-442-1-082. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the Qatar National Research Fund or Qatar University.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعconvolutional neural network
feature extraction
machine learning
writer identification
العنوانA Comparative Study of Machine Learning Approaches for Handwriter Identification
النوعConference Paper


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة