• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact of combined oil-in-water emulsions and particulate suspensions on ceramic membrane fouling and permeability recovery

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Abdalla M.
    Nasser M.
    Kayvani Fard A.
    Qiblawey H.
    Benamor A.
    Judd S.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The application of crossflow ceramic microfiltration (CFCMF) to the removal of emulsified oil from a simple analogue of raw produced water (PW) arising from oil exploration has been studied. Outcomes relate to surfactant-stabilised oil-in-water (o/w) emulsions both as a discrete emulsion and in combination with a colloidal suspension of particulate solids (bentonite). The impact on both fouling during the filtration cycle and residual fouling of the ZrO2-TiO2 membrane, following aggressive caustic-acid chemical cleaning applied between six sequential 30-min filtration runs, was investigated. Results showed the addition of suspended solids to the o/w emulsion to be extremely deleterious to sustaining both the permeability and selectivity of the membrane. The addition of 1500 mg·L−1 of bentonite to a 10 vol.% emulsion resulted in a permeability decrease of 3.5–5 times over that recorded for the emulsion, and 8–36 times lower than that of the bentonite suspension. Oil passage through the microfiltration membrane (0.45 μm pore size) was concomitantly increased six-fold. Tests performed to assess the cleanability of the membrane demonstrated similar differences between the three feed liquids. The permanent fouling of the membrane by the combined emulsion/suspension reduced its permeability by a factor of 16 over that attained for the emulsion-fouled membrane, or 25 times less than the residual permeability of the membrane challenged with the suspended particles. Moreover, the residual permeability of the emulsion/suspension-fouled membrane was still in decline following the sixth run. The results emphasise the importance of considering possible particle-emulsion interactions in studying membrane filtration of PW analogues.
    DOI/handle
    http://dx.doi.org/10.1016/j.seppur.2018.11.017
    http://hdl.handle.net/10576/14201
    Collections
    • Chemical Engineering [‎1194‎ items ]
    • GPC Research [‎501‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video