• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Clay minerals damage quantification in sandstone rocks using core flooding and NMR

    Thumbnail
    View/Open
    Kamal2019_Article_ClayMineralsDamageQuantificati.pdf (2.037Mb)
    Date
    2019
    Author
    Kamal M.S.
    Mahmoud M.
    Hanfi M.
    Elkatatny S.
    Hussein I.
    Metadata
    Show full item record
    Abstract
    Sandstone oil reservoirs consist of different clay minerals such as kaolinite, illite, and chlorite. These clay minerals highly affect the formation damage during enhanced oil recovery (EOR) and well stimulation operations in these reservoirs. No attention was paid to investigate the effect of these clay minerals on the formation damage during different reservoir processes. In addition, no solution was introduced to mitigate the effect of clay minerals on the formation damage in sandstone reservoirs. In this study, the effect of clay mineral contents and type on the formation damage was studied in detail by injecting water and HCl as damaging fluids. Bandera grey, Berea, and Bandera brown sandstone rocks with various clay mineral contents were studied. XRD was used to characterize the sandstone rocks to determine the clay type and content in each rock. Two core plugs from each rock were selected for HCl and water injection. Core flooding experiments were performed to measure the initial and final permeability. In the core flooding experiments, fluids were injected into the cores at 25 °C and at a backpressure of 1000 psi. SEM was carried out before and after flooding for the tested rocks to locate the change in the clay distribution inside the rocks. The NMR analysis of core samples was done before and after flooding with the damaging fluid to quantify the formation damage and to find the possible damaging mechanism. NMR was used to locate the damage inside the rock due to the migration of clay minerals. Based on the core flooding, SEM, and NMR analysis, the maximum damage by the fresh water took place in Berea sandstone core due to fine migration and clay swelling. The illite clay mineral and chlorite can cause the formation damage on HCl injection. Illite can break down and migrates in the cores during the acid injection. In sandstone acidizing, chlorite clay mineral caused iron hydroxide precipitation inside the cores during treatment with mud acid. NMR showed that clay minerals plugged the pore throats of the rocks and reduced the rock permeability during the injection of fresh water.
    DOI/handle
    http://dx.doi.org/10.1007/s13202-018-0507-7
    http://hdl.handle.net/10576/14268
    Collections
    • GPC Research [‎373‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video