• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reliable Task Offloading for Vehicular Fog Computing under Information Asymmetry and Information Uncertainty

    Thumbnail
    Date
    2019
    Author
    Zhou Z.
    Liao H.
    Zhao X.
    Ai B.
    Guizani M.
    Metadata
    Show full item record
    Abstract
    Vehicular fog computing has emerged as a cost-efficient solution for task processing in vehicular networks. However, how to realize effective server recruitment and reliable task offloading under information asymmetry and uncertainty remains a critical challenge. In this paper, we adopt a two-stage task offloading framework to address this challenge. First, we propose a convex-concave-procedure-based contract optimization algorithm for server recruitment, which aims to maximize the expected utility of the operator with asymmetric information. Then, a low-complexity and stable task offloading mechanism is proposed to minimize the total network delay based on the pricing-based matching. Furthermore, we extend the work to the scenario of information uncertainty and develop a matching-learning-based task offloading mechanism, which takes both occurrence awareness and conflict awareness into consideration. Simulation results demonstrate that the proposed algorithm can effectively motivate resource sharing and guarantee bounded deviation from the optimal performance without the global information. - 2019 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TVT.2019.2926732
    http://hdl.handle.net/10576/14353
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video